Ilyas KHIAT commited on
Commit
bcc9af3
·
1 Parent(s): 8135e56
Files changed (1) hide show
  1. rag.py +8 -3
rag.py CHANGED
@@ -103,7 +103,7 @@ def get_random_chunk(scene_specific = [2]) : # scene_specific = None signifie qu
103
  return chunks[random.randint(0, len(chunks) - 1)],scene_specific
104
 
105
 
106
- def get_vectorstore() -> FAISS:
107
  index = faiss.IndexFlatL2(len(embedding.embed_query("hello world")))
108
  vector_store = FAISS(
109
  embedding_function=embedding,
@@ -116,7 +116,8 @@ def get_vectorstore() -> FAISS:
116
  vector_store.add_documents(documents=documents, ids=uuids)
117
  return vector_store
118
 
119
- vectore_store = get_vectorstore()
 
120
 
121
 
122
  def generate_sphinx_response() -> sphinx_output:
@@ -148,6 +149,10 @@ def retrieve_context_from_vectorestore(query:str) -> str:
148
  retriever = vectore_store.as_retriever(search_type="mmr", search_kwargs={"k": 3})
149
  return retriever.invoke(query)
150
 
 
 
 
 
151
 
152
  def generate_stream(query:str,messages = [], model = "gpt-4o-mini", max_tokens = 300, temperature = 1,index_name="",stream=True,vector_store=None):
153
  try:
@@ -179,7 +184,7 @@ def generate_whatif_stream(question:str,response:str, stream:bool = False) -> st
179
  prompt = PromptTemplate.from_template(template_whatif)
180
  llm_chain = prompt | llm | StrOutputParser()
181
  print("Enter whatif")
182
- context = retrieve_context_from_vectorestore(f"{question} {response}")
183
  print(f"Context: {context}")
184
 
185
  if stream:
 
103
  return chunks[random.randint(0, len(chunks) - 1)],scene_specific
104
 
105
 
106
+ def get_vectorstore(chunks) -> FAISS:
107
  index = faiss.IndexFlatL2(len(embedding.embed_query("hello world")))
108
  vector_store = FAISS(
109
  embedding_function=embedding,
 
116
  vector_store.add_documents(documents=documents, ids=uuids)
117
  return vector_store
118
 
119
+ vectore_store = get_vectorstore(chunks)
120
+ scenes_vectore_store = get_vectorstore(scenes)
121
 
122
 
123
  def generate_sphinx_response() -> sphinx_output:
 
149
  retriever = vectore_store.as_retriever(search_type="mmr", search_kwargs={"k": 3})
150
  return retriever.invoke(query)
151
 
152
+ def retrieve_context_from_scenes(query:str) -> str:
153
+ retriever = scenes_vectore_store.as_retriever(search_kwargs={"k": 1})
154
+ return retriever.invoke(query)
155
+
156
 
157
  def generate_stream(query:str,messages = [], model = "gpt-4o-mini", max_tokens = 300, temperature = 1,index_name="",stream=True,vector_store=None):
158
  try:
 
184
  prompt = PromptTemplate.from_template(template_whatif)
185
  llm_chain = prompt | llm | StrOutputParser()
186
  print("Enter whatif")
187
+ context = retrieve_context_from_scenes(f"question: {question} . reponse : {response}")
188
  print(f"Context: {context}")
189
 
190
  if stream: