Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import pandas as pd | |
import gradio as gr | |
from huggingface_hub.hf_api import SpaceInfo | |
from pathlib import Path | |
path = f"https://huggingface.co/api/spaces" | |
def get_blocks_party_spaces(): | |
r = requests.get(path) | |
d = r.json() | |
spaces = [SpaceInfo(**x) for x in d] | |
blocks_spaces = {} | |
for i in range(0,len(spaces)): | |
if spaces[i].id.split('/')[0] == 'ICML2022' and hasattr(spaces[i], 'likes') and spaces[i].id != 'ICML2022/Leaderboard' and spaces[i].id != 'ICML2022/README': | |
blocks_spaces[spaces[i].id]=spaces[i].likes | |
df = pd.DataFrame( | |
[{"Spaces_Name": Spaces, "likes": likes} for Spaces,likes in blocks_spaces.items()]) | |
df = df.sort_values(by=['likes'],ascending=False) | |
return df | |
block = gr.Blocks() | |
with block: | |
gr.Markdown("""Leaderboard for the most popular ICML 2022 Spaces. To learn more and join, see <a href="https://huggingface.co/ICML2022" target="_blank" style="text-decoration: underline">ICML 2022 Event</a>""") | |
with gr.Tabs(): | |
with gr.TabItem("ICML 2022 Leaderboard"): | |
with gr.Row(): | |
data = gr.outputs.Dataframe(type="pandas") | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data) | |
block.load(get_blocks_party_spaces, inputs=None, outputs=data) | |
block.launch() | |