Spaces:
Runtime error
Runtime error
from peft import AutoPeftModelForCausalLM | |
from transformers import AutoTokenizer, TextStreamer | |
import gradio as gr | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("EITD/lora_model", token=os.getenv("HF_TOKEN")) | |
class CustomTextStreamer(TextStreamer): | |
def __init__(self, tokenizer): | |
super().__init__(tokenizer) | |
self.generated_text = "" | |
def on_token(self, token): | |
super().on_token(token) | |
self.generated_text += token | |
model = AutoPeftModelForCausalLM.from_pretrained( | |
"EITD/lora_model_1", # YOUR MODEL YOU USED FOR TRAINING | |
load_in_4bit = False, | |
) | |
tokenizer = AutoTokenizer.from_pretrained("EITD/lora_model_1") | |
# messages = [{"role": "user", "content": "Continue the Fibonacci sequence: 1, 1, 2, 3, 5, 8,"},] | |
# inputs = tokenizer.apply_chat_template( | |
# messages, | |
# tokenize = True, | |
# add_generation_prompt = True, # Must add for generation | |
# return_tensors = "pt", | |
# ) | |
# outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True, | |
# temperature = 1.5, min_p = 0.1) | |
# print(tokenizer.batch_decode(outputs)) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize = True, | |
add_generation_prompt = True, # Must add for generation | |
return_tensors = "pt", | |
) | |
custom_streamer = CustomTextStreamer(tokenizer) | |
model.generate(input_ids = inputs, streamer = custom_streamer, max_new_tokens = max_tokens, | |
use_cache = True, temperature = temperature, min_p = top_p) | |
for token in custom_streamer.generated_text: | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |