Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# model = AutoModelForCausalLM.from_pretrained( | |
# "EITD/orpo_llama", # YOUR MODEL YOU USED FOR TRAINING | |
# ) | |
# tokenizer = AutoTokenizer.from_pretrained("EITD/orpo_llama") | |
from peft import AutoPeftModelForCausalLM | |
model = AutoPeftModelForCausalLM.from_pretrained( | |
"EITD/orpo_model", # YOUR MODEL YOU USED FOR TRAINING | |
load_in_4bit = False, | |
) | |
tokenizer = AutoTokenizer.from_pretrained("EITD/orpo_model") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize = True, | |
add_generation_prompt = True, # Must add for generation | |
return_tensors = "pt", | |
) | |
outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True, | |
temperature = temperature, min_p = top_p) | |
# text_streamer = TextStreamer(tokenizer, skip_prompt = True) | |
# model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = max_tokens, | |
# use_cache = True, temperature = temperature, min_p = top_p) | |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
if "assistant" in response: | |
response = response.split("assistant")[-1].strip() | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |