Spaces:
Runtime error
Runtime error
try
Browse files- app.py +42 -49
- requirements.txt +8 -8
app.py
CHANGED
@@ -1,25 +1,29 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# from peft import AutoPeftModelForCausalLM
|
4 |
-
# from transformers import AutoTokenizer, TextStreamer, BitsAndBytesConfig
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
9 |
# client = InferenceClient("EITD/lora_model", token=os.getenv("HF_TOKEN"))
|
10 |
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# )
|
16 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
tokenizer
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
|
23 |
|
24 |
def respond(
|
25 |
message,
|
@@ -53,24 +57,13 @@ def respond(
|
|
53 |
# response += token
|
54 |
# yield response
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
for msg in messages:
|
64 |
-
if msg['role'] == 'user':
|
65 |
-
conversation += f"User: {msg['content']}\n"
|
66 |
-
elif msg['role'] == 'assistant':
|
67 |
-
conversation += f"Assistant: {msg['content']}\n"
|
68 |
-
conversation += "Assistant: "
|
69 |
-
inputs = tokenizer.encode(conversation, return_tensors='pt')
|
70 |
-
# text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
71 |
-
# for response in model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = max_tokens, use_cache = True,
|
72 |
-
# temperature = temperature, min_p = top_p):
|
73 |
-
# yield response
|
74 |
outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True,
|
75 |
temperature = temperature, min_p = top_p)
|
76 |
return tokenizer.batch_decode(outputs)
|
@@ -79,22 +72,22 @@ def respond(
|
|
79 |
"""
|
80 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
81 |
"""
|
82 |
-
demo = gr.ChatInterface(
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
)
|
97 |
|
98 |
|
99 |
-
if __name__ == "__main__":
|
100 |
-
|
|
|
1 |
+
from peft import AutoPeftModelForCausalLM
|
2 |
+
from transformers import AutoTokenizer
|
|
|
|
|
|
|
3 |
"""
|
4 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
5 |
"""
|
6 |
# client = InferenceClient("EITD/lora_model", token=os.getenv("HF_TOKEN"))
|
7 |
|
8 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
9 |
+
"EITD/lora_model_1", # YOUR MODEL YOU USED FOR TRAINING
|
10 |
+
load_in_4bit = False,
|
11 |
+
)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("EITD/lora_model_1")
|
13 |
+
|
14 |
+
# messages = [{"role": "user", "content": "Continue the Fibonacci sequence: 1, 1, 2, 3, 5, 8,"},]
|
15 |
+
|
16 |
+
# inputs = tokenizer.apply_chat_template(
|
17 |
+
# messages,
|
18 |
+
# tokenize = True,
|
19 |
+
# add_generation_prompt = True, # Must add for generation
|
20 |
+
# return_tensors = "pt",
|
21 |
# )
|
|
|
22 |
|
23 |
+
# outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True,
|
24 |
+
# temperature = 1.5, min_p = 0.1)
|
25 |
|
26 |
+
# print(tokenizer.batch_decode(outputs))
|
|
|
27 |
|
28 |
def respond(
|
29 |
message,
|
|
|
57 |
# response += token
|
58 |
# yield response
|
59 |
|
60 |
+
inputs = tokenizer.apply_chat_template(
|
61 |
+
messages,
|
62 |
+
tokenize = True,
|
63 |
+
add_generation_prompt = True, # Must add for generation
|
64 |
+
return_tensors = "pt",
|
65 |
+
)
|
66 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True,
|
68 |
temperature = temperature, min_p = top_p)
|
69 |
return tokenizer.batch_decode(outputs)
|
|
|
72 |
"""
|
73 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
74 |
"""
|
75 |
+
# demo = gr.ChatInterface(
|
76 |
+
# respond,
|
77 |
+
# additional_inputs=[
|
78 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
79 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
80 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
81 |
+
# gr.Slider(
|
82 |
+
# minimum=0.1,
|
83 |
+
# maximum=1.0,
|
84 |
+
# value=0.95,
|
85 |
+
# step=0.05,
|
86 |
+
# label="Top-p (nucleus sampling)",
|
87 |
+
# ),
|
88 |
+
# ],
|
89 |
+
# )
|
90 |
|
91 |
|
92 |
+
# if __name__ == "__main__":
|
93 |
+
# demo.launch()
|
requirements.txt
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
2 |
-
|
3 |
transformers==4.46.3
|
4 |
# bitsandbytes==0.42.0
|
5 |
-
torch==2.5.1
|
6 |
-
gguf==0.10.0
|
7 |
-
sentencepiece==0.2.0
|
8 |
-
numpy
|
9 |
-
accelerate==1.1.1
|
10 |
-
unsloth==2024.11.9
|
|
|
1 |
+
# huggingface_hub==0.25.2
|
2 |
+
peft==0.13.2
|
3 |
transformers==4.46.3
|
4 |
# bitsandbytes==0.42.0
|
5 |
+
# torch==2.5.1
|
6 |
+
# gguf==0.10.0
|
7 |
+
# sentencepiece==0.2.0
|
8 |
+
# numpy==1.26.4
|
9 |
+
# accelerate==1.1.1
|
10 |
+
# unsloth==2024.11.9
|