Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import AutoProcessor, AutoModel | |
from PIL import Image | |
from decord import VideoReader, cpu | |
def sample_uniform_frame_indices(clip_len, seg_len): | |
""" | |
Samples `clip_len` uniformly spaced frame indices from a video of length `seg_len`. | |
Handles edge cases where `seg_len` might be less than `clip_len`. | |
""" | |
if seg_len < clip_len: | |
repeat_factor = np.ceil(clip_len / seg_len).astype(int) | |
indices = np.arange(seg_len).tolist() * repeat_factor | |
indices = indices[:clip_len] | |
else: | |
spacing = seg_len // clip_len | |
indices = [i * spacing for i in range(clip_len)] | |
return np.array(indices).astype(np.int64) | |
def read_video_decord(file_path, indices): | |
vr = VideoReader(file_path, num_threads=1, ctx=cpu(0)) | |
video = vr.get_batch(indices).asnumpy() | |
return video | |
def concatenate_frames(frames, clip_len): | |
assert len(frames) == clip_len, f"The function expects {clip_len} frames as input." | |
layout = { | |
32: (4, 8), | |
16: (4, 4), | |
8: (2, 4) | |
} | |
rows, cols = layout[clip_len] | |
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows)) | |
frame_iter = iter(frames) | |
y_offset = 0 | |
for i in range(rows): | |
x_offset = 0 | |
for j in range(cols): | |
img = Image.fromarray(next(frame_iter)) | |
combined_image.paste(img, (x_offset, y_offset)) | |
x_offset += frames[0].shape[1] | |
y_offset += frames[0].shape[0] | |
return combined_image | |
def model_interface(uploaded_video, model_choice, activities): | |
clip_len = { | |
"microsoft/xclip-base-patch16-zero-shot": 32, | |
"microsoft/xclip-base-patch32-16-frames": 16, | |
"microsoft/xclip-base-patch32": 8 | |
}.get(model_choice, 32) | |
indices = sample_uniform_frame_indices(clip_len, seg_len=len(VideoReader(uploaded_video))) | |
video = read_video_decord(uploaded_video, indices) | |
concatenated_image = concatenate_frames(video, clip_len) # Passed clip_len as argument | |
processor = AutoProcessor.from_pretrained(model_choice) | |
model = AutoModel.from_pretrained(model_choice) | |
activities_list = activities.split(",") | |
inputs = processor( | |
text=activities_list, | |
videos=list(video), | |
return_tensors="pt", | |
padding=True, | |
) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits_per_video = outputs.logits_per_video | |
probs = logits_per_video.softmax(dim=1) | |
results_probs = [] | |
results_logits = [] | |
for i in range(len(activities_list)): | |
activity = activities_list[i] | |
prob = float(probs[0][i]) | |
logit = float(logits_per_video[0][i]) | |
results_probs.append((activity, f"Probability: {prob * 100:.2f}%")) | |
results_logits.append((activity, f"Raw Score: {logit:.2f}")) | |
# Retrieve most likely predicted label and its probability | |
max_prob_idx = probs[0].argmax().item() | |
most_likely_activity = activities_list[max_prob_idx] | |
most_likely_prob = float(probs[0][max_prob_idx]) | |
return concatenated_image, results_probs, results_logits, (most_likely_activity, f"Probability: {most_likely_prob * 100:.2f}%") | |
iface = gr.Interface( | |
fn=model_interface, | |
inputs=[ | |
gr.components.Video(label="Upload a video file"), | |
gr.components.Dropdown(choices=[ | |
"microsoft/xclip-base-patch16-zero-shot", | |
"microsoft/xclip-base-patch32-16-frames", | |
"microsoft/xclip-base-patch32" | |
], label="Model Choice"), | |
gr.components.Textbox(lines=4, label="Enter activities (comma-separated)"), | |
], | |
outputs=[ | |
gr.components.Image(type="pil", label="sampled frames"), | |
gr.components.Textbox(type="text", label="Probabilities"), | |
gr.components.Textbox(type="text", label="Raw Scores"), | |
gr.components.Textbox(type="text", label="Most Likely Prediction") | |
], | |
live=False | |
) | |
iface.launch() |