dog_classifiers / app.py
Imran1's picture
Create app.py
ed0c610
import gradio as gr
from transformers import pipeline
from PIL import Image
import requests
from transformers import pipeline
checkpoint = "openai/clip-vit-large-patch14"
detector = pipeline(model=checkpoint, task="zero-shot-image-classification")
# Function to predict dog category
def predict_dog_category(image):
# List of dog categories
dog_category = [
'Siberian Husky', 'Boxer', # Working Dogs
'Border Collie', 'Australian Shepherd', # Herding Dogs
'Chihuahua', 'Pomeranian', # Toy Dogs
'Labrador Retriever', 'Golden Retriever', # Sporting Dogs
'Yorkshire Terrier', 'Bull Terrier', # Terriers
'Bulldog', 'Poodle' # Non-Sporting Dogs
]
# Use CLIP model to predict dog category
predictions = detector(image, candidate_labels=dog_category)
return {predictions[i]['label']: float(predictions[i]['score']) for i in range(len(predictions))}
# Create Gradio interface
iface = gr.Interface(
fn=predict_dog_category,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=12)
)
iface.launch(share=True)