File size: 11,041 Bytes
5a5a36e e123907 5a5a36e 653f44e 5a5a36e 653f44e 5a5a36e 653f44e 5a5a36e 653f44e 5a5a36e 653f44e 5a5a36e cf7af95 b10d6d4 cf7af95 b10d6d4 cf7af95 b10d6d4 cf7af95 b10d6d4 cf7af95 b10d6d4 cf7af95 5a5a36e 607469c 5a5a36e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
from transformers import AutoConfig, AutoTokenizer
from src.envs import HAS_HIGHER_RATE_LIMIT
from huggingface_hub import hf_hub_download, HfFileSystem
from huggingface_hub.utils import validate_repo_id
from pathlib import Path
import fnmatch
from huggingface_hub.hf_api import get_hf_file_metadata, hf_hub_url
# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
# Returns operation status, and error message
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
), None
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short.", None
return True, "", card
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
if test_tokenizer:
try:
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
return True, None, config
except ValueError as e:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
if "You are trying to access a gated repo." in str(e):
return True, "uses a gated model.", None
return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
def get_model_size(model_info: ModelInfo, precision: str):
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
safetensors = None
try:
safetensors = get_safetensors_metadata(model_info.id)
num_parameters = 0
mem = 0
for key in safetensors.parameter_count:
if key in ["F16", "BF16"]:
mem += safetensors.parameter_count[key] * 2
else:
mem += safetensors.parameter_count[key] * 4
num_parameters += safetensors.parameter_count[key]
params_b = round(num_parameters / 1e9, 2)
size_gb = round(mem / 1e9,2)
return params_b, size_gb
except Exception as e:
print(str(e))
if safetensors is not None:
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
else:
try:
size_match = re.search(size_pattern, model_info.id.lower())
model_size = size_match.group(0)
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
except AttributeError as e:
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
# size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
# model_size = size_factor * model_size
if precision == "16bit":
size_gb = model_size * 2
else:
size_gb = model_size * 4
return model_size, size_gb
KNOWN_SIZE_FACTOR = {
"gptq": {"4bit": 8, "8bit": 4, "2bit": 8, "3bit": 12},
"awq": {"4bit": 8},
"bitsandbytes": {"4bit": 2},
"aqlm": {"4bit": 8, "8bit": 4, "2bit": 8, "3bit": 6},
}
BYTES = {
"I32": 4,
"I16": 2,
"I8": 1,
"F16": 2,
"BF16": 2,
"F32": 4,
"U8": 1}
def get_quantized_model_parameters_memory(model_info: ModelInfo, quant_method="", bits="4bit"):
try:
safetensors = get_safetensors_metadata(model_info.id)
num_parameters = 0
mem = 0
for key in safetensors.parameter_count:
mem += safetensors.parameter_count[key] * BYTES[key]
if key in ["I32", "U8", "I16", "I8"]:
param = safetensors.parameter_count[key] * KNOWN_SIZE_FACTOR[quant_method][bits]
if key == "I8":
param = param / 2
num_parameters += param
params_b = round(num_parameters / 1e9, 2)
size_gb = round(mem / 1e9,2)
return params_b, size_gb
except Exception as e:
print(str(e))
filenames = [sib.rfilename for sib in model_info.siblings]
if "pytorch_model.bin" in filenames:
url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
meta = get_hf_file_metadata(url)
params_b = round(meta.size * 2 / 1e9, 2)
size_gb = round(meta.size / 1e9, 2)
return params_b, size_gb
if "pytorch_model.bin.index.json" in filenames:
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
"""
{
"metadata": {
"total_size": 28272820224
},....
"""
size = json.load(open(index_path))
bytes_per_param = 2
if ("metadata" in size) and ("total_size" in size["metadata"]):
return round(size["metadata"]["total_size"] / bytes_per_param / 1e9, 2), \
round(size["metadata"]["total_size"] / 1e9, 2)
return None, None
def get_model_arch(model_info: ModelInfo):
return model_info.config.get("architectures", "Unknown")
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
if org_or_user not in users_to_submission_dates:
return True, ""
submission_dates = sorted(users_to_submission_dates[org_or_user])
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
num_models_submitted_in_period = len(submissions_after_timelimit)
if org_or_user in HAS_HIGHER_RATE_LIMIT:
rate_limit_quota = 2 * rate_limit_quota
if num_models_submitted_in_period > rate_limit_quota:
error_msg = f"Organisation or user `{org_or_user}`"
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
error_msg += f"in the last {rate_limit_period} days.\n"
error_msg += (
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
)
return False, error_msg
return True, ""
def already_submitted_models(requested_models_dir: str) -> set[str]:
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
# {quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json
quant_type = info.get("quant_type", "None")
weight_dtype = info.get("weight_dtype", "None")
compute_dtype = info.get("compute_dtype", "None")
file_names.append(f"{info['model']}_{info['revision']}_{quant_type}_{info['precision']}_{weight_dtype}_{compute_dtype}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
try:
organisation, _ = info["model"].split("/")
except:
print(info["model"])
organisation = "local" # temporary "local"
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
def get_model_tags(model_card, model: str):
is_merge_from_metadata = False
is_moe_from_metadata = False
tags = []
if model_card is None:
return tags
if model_card.data.tags:
is_merge_from_metadata = any([tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]])
is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"])
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
return tags
def is_gguf_on_hub(repo_id: str, filename="*Q4_0.gguf"):
validate_repo_id(repo_id)
hffs = HfFileSystem()
files = [
file["name"] if isinstance(file, dict) else file
for file in hffs.ls(repo_id)
]
# split each file into repo_id, subfolder, filename
file_list: List[str] = []
for file in files:
rel_path = Path(file).relative_to(repo_id)
file_list.append(str(rel_path))
print(file_list)
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore
if len(matching_files) > 0:
return True, None, matching_files, None
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename.lower())]
if len(matching_files) > 0:
return True, None, matching_files, filename.lower()
else:
return False, f"the model {repo_id} don't contains any {filename}.", None, None
|