File size: 11,041 Bytes
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e123907
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653f44e
5a5a36e
 
 
 
 
653f44e
 
 
 
 
 
 
 
 
 
 
 
 
5a5a36e
653f44e
5a5a36e
 
 
 
 
 
 
 
 
 
 
653f44e
5a5a36e
653f44e
 
 
 
 
5a5a36e
cf7af95
b10d6d4
cf7af95
b10d6d4
 
cf7af95
 
 
 
b10d6d4
 
cf7af95
 
 
 
 
b10d6d4
cf7af95
 
 
 
 
 
 
b10d6d4
 
 
 
 
cf7af95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607469c
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone

import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
from transformers import AutoConfig, AutoTokenizer

from src.envs import HAS_HIGHER_RATE_LIMIT
from huggingface_hub import hf_hub_download, HfFileSystem
from huggingface_hub.utils import validate_repo_id
from pathlib import Path
import fnmatch
from huggingface_hub.hf_api import get_hf_file_metadata, hf_hub_url


# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
    # Returns operation status, and error message
    try:
        card = ModelCard.load(repo_id)
    except huggingface_hub.utils.EntryNotFoundError:
        return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None

    # Enforce license metadata
    if card.data.license is None:
        if not ("license_name" in card.data and "license_link" in card.data):
            return False, (
                "License not found. Please add a license to your model card using the `license` metadata or a"
                " `license_name`/`license_link` pair."
            ), None

    # Enforce card content
    if len(card.text) < 200:
        return False, "Please add a description to your model card, it is too short.", None

    return True, "", card


def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
    try:
        config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
        if test_tokenizer:
            try:
                tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
            except ValueError as e:
                return (
                    False,
                    f"uses a tokenizer which is not in a transformers release: {e}",
                    None
                )
            except Exception as e:
                return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
        return True, None, config

    except ValueError as e:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
            None
        )

    except Exception as e:
        if "You are trying to access a gated repo." in str(e):
            return True, "uses a gated model.", None
        return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None


def get_model_size(model_info: ModelInfo, precision: str):
    size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
    safetensors = None
    try:
        safetensors = get_safetensors_metadata(model_info.id)
        num_parameters = 0
        mem = 0
        for key in safetensors.parameter_count:
            if key in ["F16", "BF16"]:
                mem += safetensors.parameter_count[key] * 2
            else:
                mem += safetensors.parameter_count[key] * 4

            num_parameters += safetensors.parameter_count[key]

        params_b = round(num_parameters / 1e9, 2)
        size_gb = round(mem / 1e9,2)
        return params_b, size_gb
    except Exception as e:
        print(str(e))

    if safetensors is not None:
        model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
    else:
        try:
            size_match = re.search(size_pattern, model_info.id.lower())
            model_size = size_match.group(0)
            model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
        except AttributeError as e:
            return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    # size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
    # model_size = size_factor * model_size
    if precision == "16bit":
        size_gb = model_size * 2
    else:
        size_gb = model_size * 4
    return model_size, size_gb

KNOWN_SIZE_FACTOR = {
    "gptq": {"4bit": 8, "8bit": 4, "2bit": 8, "3bit": 12},
    "awq": {"4bit": 8},
    "bitsandbytes": {"4bit": 2},
    "aqlm": {"4bit": 8, "8bit": 4, "2bit": 8, "3bit": 6},
}

BYTES = {
    "I32": 4,
    "I16": 2,
    "I8": 1,
    "F16": 2,
    "BF16": 2,
    "F32": 4,
    "U8": 1}


def get_quantized_model_parameters_memory(model_info: ModelInfo, quant_method="", bits="4bit"):
    try:
        safetensors = get_safetensors_metadata(model_info.id)
        num_parameters = 0
        mem = 0
        for key in safetensors.parameter_count:
            mem += safetensors.parameter_count[key] * BYTES[key]
            if key in ["I32", "U8", "I16", "I8"]:
                param = safetensors.parameter_count[key] * KNOWN_SIZE_FACTOR[quant_method][bits]
                if key == "I8":
                    param = param / 2
                num_parameters += param

        params_b = round(num_parameters / 1e9, 2)
        size_gb = round(mem / 1e9,2)
        return params_b, size_gb
    except Exception as e:
        print(str(e))

    filenames = [sib.rfilename for sib in model_info.siblings]
    if "pytorch_model.bin" in filenames:
        url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
        meta = get_hf_file_metadata(url)
        params_b = round(meta.size * 2 / 1e9, 2)
        size_gb = round(meta.size / 1e9, 2)
        return params_b, size_gb

    if "pytorch_model.bin.index.json" in filenames:
        index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
        """
        {
        "metadata": {
            "total_size": 28272820224
        },....
        """
        size = json.load(open(index_path))
        bytes_per_param = 2
        if ("metadata" in size) and ("total_size" in size["metadata"]):
            return round(size["metadata"]["total_size"] / bytes_per_param / 1e9, 2), \
                    round(size["metadata"]["total_size"] / 1e9, 2)

    return None, None

def get_model_arch(model_info: ModelInfo):
    return model_info.config.get("architectures", "Unknown")

def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
    if org_or_user not in users_to_submission_dates:
        return True, ""
    submission_dates = sorted(users_to_submission_dates[org_or_user])

    time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
    submissions_after_timelimit = [d for d in submission_dates if d > time_limit]

    num_models_submitted_in_period = len(submissions_after_timelimit)
    if org_or_user in HAS_HIGHER_RATE_LIMIT:
        rate_limit_quota = 2 * rate_limit_quota

    if num_models_submitted_in_period > rate_limit_quota:
        error_msg = f"Organisation or user `{org_or_user}`"
        error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
        error_msg += f"in the last {rate_limit_period} days.\n"
        error_msg += (
            "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
        )
        return False, error_msg
    return True, ""


def already_submitted_models(requested_models_dir: str) -> set[str]:
    depth = 1
    file_names = []
    users_to_submission_dates = defaultdict(list)

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            for file in files:
                if not file.endswith(".json"):
                    continue
                with open(os.path.join(root, file), "r") as f:
                    info = json.load(f)
                    # {quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json
                    quant_type = info.get("quant_type", "None")
                    weight_dtype = info.get("weight_dtype", "None")
                    compute_dtype = info.get("compute_dtype", "None")
                    file_names.append(f"{info['model']}_{info['revision']}_{quant_type}_{info['precision']}_{weight_dtype}_{compute_dtype}")

                    # Select organisation
                    if info["model"].count("/") == 0 or "submitted_time" not in info:
                        continue

                    try:
                        organisation, _ = info["model"].split("/")
                    except:
                        print(info["model"])
                        organisation = "local" # temporary "local"
                    users_to_submission_dates[organisation].append(info["submitted_time"])

    return set(file_names), users_to_submission_dates

def get_model_tags(model_card, model: str):
    is_merge_from_metadata = False
    is_moe_from_metadata = False

    tags = []
    if model_card is None:
        return tags
    if model_card.data.tags:
        is_merge_from_metadata = any([tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]])
        is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])

    is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"])
    if is_merge_from_model_card or is_merge_from_metadata:
        tags.append("merge")
    is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
    is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
    if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
        tags.append("moe")

    return tags

def is_gguf_on_hub(repo_id: str, filename="*Q4_0.gguf"):

    validate_repo_id(repo_id)

    hffs = HfFileSystem()

    files = [
        file["name"] if isinstance(file, dict) else file
        for file in hffs.ls(repo_id)
    ]

    # split each file into repo_id, subfolder, filename
    file_list: List[str] = []
    for file in files:
        rel_path = Path(file).relative_to(repo_id)
        file_list.append(str(rel_path))

    print(file_list)

    matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)]  # type: ignore
    if len(matching_files) > 0:
        return True, None, matching_files, None

    matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename.lower())]

    if len(matching_files) > 0:
        return True, None, matching_files, filename.lower()
    else:
        return False, f"the model {repo_id} don't contains any {filename}.", None, None