Spaces:
Paused
Paused
ResearcherXman
commited on
Commit
·
2192aaf
1
Parent(s):
ec7fc1c
fix
Browse files- app.py +1 -2
- model_util.py +0 -472
app.py
CHANGED
@@ -18,7 +18,6 @@ from insightface.app import FaceAnalysis
|
|
18 |
|
19 |
from style_template import styles
|
20 |
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
|
21 |
-
from model_util import load_models_xl, get_torch_device
|
22 |
from controlnet_util import openpose, get_depth_map, get_canny_image
|
23 |
|
24 |
import gradio as gr
|
@@ -27,7 +26,7 @@ import spaces
|
|
27 |
|
28 |
# global variable
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
-
device =
|
31 |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
32 |
STYLE_NAMES = list(styles.keys())
|
33 |
DEFAULT_STYLE_NAME = "Watercolor"
|
|
|
18 |
|
19 |
from style_template import styles
|
20 |
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
|
|
|
21 |
from controlnet_util import openpose, get_depth_map, get_canny_image
|
22 |
|
23 |
import gradio as gr
|
|
|
26 |
|
27 |
# global variable
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
31 |
STYLE_NAMES = list(styles.keys())
|
32 |
DEFAULT_STYLE_NAME = "Watercolor"
|
model_util.py
DELETED
@@ -1,472 +0,0 @@
|
|
1 |
-
from typing import Literal, Union, Optional, Tuple, List
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
5 |
-
from diffusers import (
|
6 |
-
UNet2DConditionModel,
|
7 |
-
SchedulerMixin,
|
8 |
-
StableDiffusionPipeline,
|
9 |
-
StableDiffusionXLPipeline,
|
10 |
-
AutoencoderKL,
|
11 |
-
)
|
12 |
-
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
13 |
-
convert_ldm_unet_checkpoint,
|
14 |
-
)
|
15 |
-
from safetensors.torch import load_file
|
16 |
-
from diffusers.schedulers import (
|
17 |
-
DDIMScheduler,
|
18 |
-
DDPMScheduler,
|
19 |
-
LMSDiscreteScheduler,
|
20 |
-
EulerDiscreteScheduler,
|
21 |
-
EulerAncestralDiscreteScheduler,
|
22 |
-
UniPCMultistepScheduler,
|
23 |
-
)
|
24 |
-
|
25 |
-
from omegaconf import OmegaConf
|
26 |
-
|
27 |
-
# DiffUsers版StableDiffusionのモデルパラメータ
|
28 |
-
NUM_TRAIN_TIMESTEPS = 1000
|
29 |
-
BETA_START = 0.00085
|
30 |
-
BETA_END = 0.0120
|
31 |
-
|
32 |
-
UNET_PARAMS_MODEL_CHANNELS = 320
|
33 |
-
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
34 |
-
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
35 |
-
UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32`
|
36 |
-
UNET_PARAMS_IN_CHANNELS = 4
|
37 |
-
UNET_PARAMS_OUT_CHANNELS = 4
|
38 |
-
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
39 |
-
UNET_PARAMS_CONTEXT_DIM = 768
|
40 |
-
UNET_PARAMS_NUM_HEADS = 8
|
41 |
-
# UNET_PARAMS_USE_LINEAR_PROJECTION = False
|
42 |
-
|
43 |
-
VAE_PARAMS_Z_CHANNELS = 4
|
44 |
-
VAE_PARAMS_RESOLUTION = 256
|
45 |
-
VAE_PARAMS_IN_CHANNELS = 3
|
46 |
-
VAE_PARAMS_OUT_CH = 3
|
47 |
-
VAE_PARAMS_CH = 128
|
48 |
-
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
49 |
-
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
50 |
-
|
51 |
-
# V2
|
52 |
-
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
53 |
-
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
54 |
-
# V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True
|
55 |
-
|
56 |
-
TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
|
57 |
-
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"
|
58 |
-
|
59 |
-
AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a", "euler", "uniPC"]
|
60 |
-
|
61 |
-
SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]
|
62 |
-
|
63 |
-
DIFFUSERS_CACHE_DIR = None # if you want to change the cache dir, change this
|
64 |
-
|
65 |
-
|
66 |
-
def load_checkpoint_with_text_encoder_conversion(ckpt_path: str, device="cpu"):
|
67 |
-
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
68 |
-
TEXT_ENCODER_KEY_REPLACEMENTS = [
|
69 |
-
(
|
70 |
-
"cond_stage_model.transformer.embeddings.",
|
71 |
-
"cond_stage_model.transformer.text_model.embeddings.",
|
72 |
-
),
|
73 |
-
(
|
74 |
-
"cond_stage_model.transformer.encoder.",
|
75 |
-
"cond_stage_model.transformer.text_model.encoder.",
|
76 |
-
),
|
77 |
-
(
|
78 |
-
"cond_stage_model.transformer.final_layer_norm.",
|
79 |
-
"cond_stage_model.transformer.text_model.final_layer_norm.",
|
80 |
-
),
|
81 |
-
]
|
82 |
-
|
83 |
-
if ckpt_path.endswith(".safetensors"):
|
84 |
-
checkpoint = None
|
85 |
-
state_dict = load_file(ckpt_path) # , device) # may causes error
|
86 |
-
else:
|
87 |
-
checkpoint = torch.load(ckpt_path, map_location=device)
|
88 |
-
if "state_dict" in checkpoint:
|
89 |
-
state_dict = checkpoint["state_dict"]
|
90 |
-
else:
|
91 |
-
state_dict = checkpoint
|
92 |
-
checkpoint = None
|
93 |
-
|
94 |
-
key_reps = []
|
95 |
-
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
96 |
-
for key in state_dict.keys():
|
97 |
-
if key.startswith(rep_from):
|
98 |
-
new_key = rep_to + key[len(rep_from) :]
|
99 |
-
key_reps.append((key, new_key))
|
100 |
-
|
101 |
-
for key, new_key in key_reps:
|
102 |
-
state_dict[new_key] = state_dict[key]
|
103 |
-
del state_dict[key]
|
104 |
-
|
105 |
-
return checkpoint, state_dict
|
106 |
-
|
107 |
-
|
108 |
-
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False):
|
109 |
-
"""
|
110 |
-
Creates a config for the diffusers based on the config of the LDM model.
|
111 |
-
"""
|
112 |
-
# unet_params = original_config.model.params.unet_config.params
|
113 |
-
|
114 |
-
block_out_channels = [
|
115 |
-
UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT
|
116 |
-
]
|
117 |
-
|
118 |
-
down_block_types = []
|
119 |
-
resolution = 1
|
120 |
-
for i in range(len(block_out_channels)):
|
121 |
-
block_type = (
|
122 |
-
"CrossAttnDownBlock2D"
|
123 |
-
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
124 |
-
else "DownBlock2D"
|
125 |
-
)
|
126 |
-
down_block_types.append(block_type)
|
127 |
-
if i != len(block_out_channels) - 1:
|
128 |
-
resolution *= 2
|
129 |
-
|
130 |
-
up_block_types = []
|
131 |
-
for i in range(len(block_out_channels)):
|
132 |
-
block_type = (
|
133 |
-
"CrossAttnUpBlock2D"
|
134 |
-
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
135 |
-
else "UpBlock2D"
|
136 |
-
)
|
137 |
-
up_block_types.append(block_type)
|
138 |
-
resolution //= 2
|
139 |
-
|
140 |
-
config = dict(
|
141 |
-
sample_size=UNET_PARAMS_IMAGE_SIZE,
|
142 |
-
in_channels=UNET_PARAMS_IN_CHANNELS,
|
143 |
-
out_channels=UNET_PARAMS_OUT_CHANNELS,
|
144 |
-
down_block_types=tuple(down_block_types),
|
145 |
-
up_block_types=tuple(up_block_types),
|
146 |
-
block_out_channels=tuple(block_out_channels),
|
147 |
-
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
|
148 |
-
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM
|
149 |
-
if not v2
|
150 |
-
else V2_UNET_PARAMS_CONTEXT_DIM,
|
151 |
-
attention_head_dim=UNET_PARAMS_NUM_HEADS
|
152 |
-
if not v2
|
153 |
-
else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
|
154 |
-
# use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION,
|
155 |
-
)
|
156 |
-
if v2 and use_linear_projection_in_v2:
|
157 |
-
config["use_linear_projection"] = True
|
158 |
-
|
159 |
-
return config
|
160 |
-
|
161 |
-
|
162 |
-
def load_diffusers_model(
|
163 |
-
pretrained_model_name_or_path: str,
|
164 |
-
v2: bool = False,
|
165 |
-
clip_skip: Optional[int] = None,
|
166 |
-
weight_dtype: torch.dtype = torch.float32,
|
167 |
-
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
168 |
-
if v2:
|
169 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
170 |
-
TOKENIZER_V2_MODEL_NAME,
|
171 |
-
subfolder="tokenizer",
|
172 |
-
torch_dtype=weight_dtype,
|
173 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
174 |
-
)
|
175 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
176 |
-
pretrained_model_name_or_path,
|
177 |
-
subfolder="text_encoder",
|
178 |
-
# default is clip skip 2
|
179 |
-
num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
|
180 |
-
torch_dtype=weight_dtype,
|
181 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
182 |
-
)
|
183 |
-
else:
|
184 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
185 |
-
TOKENIZER_V1_MODEL_NAME,
|
186 |
-
subfolder="tokenizer",
|
187 |
-
torch_dtype=weight_dtype,
|
188 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
189 |
-
)
|
190 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
191 |
-
pretrained_model_name_or_path,
|
192 |
-
subfolder="text_encoder",
|
193 |
-
num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
|
194 |
-
torch_dtype=weight_dtype,
|
195 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
196 |
-
)
|
197 |
-
|
198 |
-
unet = UNet2DConditionModel.from_pretrained(
|
199 |
-
pretrained_model_name_or_path,
|
200 |
-
subfolder="unet",
|
201 |
-
torch_dtype=weight_dtype,
|
202 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
203 |
-
)
|
204 |
-
|
205 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
206 |
-
|
207 |
-
return tokenizer, text_encoder, unet, vae
|
208 |
-
|
209 |
-
|
210 |
-
def load_checkpoint_model(
|
211 |
-
checkpoint_path: str,
|
212 |
-
v2: bool = False,
|
213 |
-
clip_skip: Optional[int] = None,
|
214 |
-
weight_dtype: torch.dtype = torch.float32,
|
215 |
-
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
216 |
-
pipe = StableDiffusionPipeline.from_single_file(
|
217 |
-
checkpoint_path,
|
218 |
-
upcast_attention=True if v2 else False,
|
219 |
-
torch_dtype=weight_dtype,
|
220 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
221 |
-
)
|
222 |
-
|
223 |
-
_, state_dict = load_checkpoint_with_text_encoder_conversion(checkpoint_path)
|
224 |
-
unet_config = create_unet_diffusers_config(v2, use_linear_projection_in_v2=v2)
|
225 |
-
unet_config["class_embed_type"] = None
|
226 |
-
unet_config["addition_embed_type"] = None
|
227 |
-
converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config)
|
228 |
-
unet = UNet2DConditionModel(**unet_config)
|
229 |
-
unet.load_state_dict(converted_unet_checkpoint)
|
230 |
-
|
231 |
-
tokenizer = pipe.tokenizer
|
232 |
-
text_encoder = pipe.text_encoder
|
233 |
-
vae = pipe.vae
|
234 |
-
if clip_skip is not None:
|
235 |
-
if v2:
|
236 |
-
text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
|
237 |
-
else:
|
238 |
-
text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)
|
239 |
-
|
240 |
-
del pipe
|
241 |
-
|
242 |
-
return tokenizer, text_encoder, unet, vae
|
243 |
-
|
244 |
-
|
245 |
-
def load_models(
|
246 |
-
pretrained_model_name_or_path: str,
|
247 |
-
scheduler_name: str,
|
248 |
-
v2: bool = False,
|
249 |
-
v_pred: bool = False,
|
250 |
-
weight_dtype: torch.dtype = torch.float32,
|
251 |
-
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
|
252 |
-
if pretrained_model_name_or_path.endswith(
|
253 |
-
".ckpt"
|
254 |
-
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
255 |
-
tokenizer, text_encoder, unet, vae = load_checkpoint_model(
|
256 |
-
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
257 |
-
)
|
258 |
-
else: # diffusers
|
259 |
-
tokenizer, text_encoder, unet, vae = load_diffusers_model(
|
260 |
-
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
261 |
-
)
|
262 |
-
|
263 |
-
if scheduler_name:
|
264 |
-
scheduler = create_noise_scheduler(
|
265 |
-
scheduler_name,
|
266 |
-
prediction_type="v_prediction" if v_pred else "epsilon",
|
267 |
-
)
|
268 |
-
else:
|
269 |
-
scheduler = None
|
270 |
-
|
271 |
-
return tokenizer, text_encoder, unet, scheduler, vae
|
272 |
-
|
273 |
-
|
274 |
-
def load_diffusers_model_xl(
|
275 |
-
pretrained_model_name_or_path: str,
|
276 |
-
weight_dtype: torch.dtype = torch.float32,
|
277 |
-
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
278 |
-
# returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet
|
279 |
-
|
280 |
-
tokenizers = [
|
281 |
-
CLIPTokenizer.from_pretrained(
|
282 |
-
pretrained_model_name_or_path,
|
283 |
-
subfolder="tokenizer",
|
284 |
-
torch_dtype=weight_dtype,
|
285 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
286 |
-
),
|
287 |
-
CLIPTokenizer.from_pretrained(
|
288 |
-
pretrained_model_name_or_path,
|
289 |
-
subfolder="tokenizer_2",
|
290 |
-
torch_dtype=weight_dtype,
|
291 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
292 |
-
pad_token_id=0, # same as open clip
|
293 |
-
),
|
294 |
-
]
|
295 |
-
|
296 |
-
text_encoders = [
|
297 |
-
CLIPTextModel.from_pretrained(
|
298 |
-
pretrained_model_name_or_path,
|
299 |
-
subfolder="text_encoder",
|
300 |
-
torch_dtype=weight_dtype,
|
301 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
302 |
-
),
|
303 |
-
CLIPTextModelWithProjection.from_pretrained(
|
304 |
-
pretrained_model_name_or_path,
|
305 |
-
subfolder="text_encoder_2",
|
306 |
-
torch_dtype=weight_dtype,
|
307 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
308 |
-
),
|
309 |
-
]
|
310 |
-
|
311 |
-
unet = UNet2DConditionModel.from_pretrained(
|
312 |
-
pretrained_model_name_or_path,
|
313 |
-
subfolder="unet",
|
314 |
-
torch_dtype=weight_dtype,
|
315 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
316 |
-
)
|
317 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
318 |
-
return tokenizers, text_encoders, unet, vae
|
319 |
-
|
320 |
-
|
321 |
-
def load_checkpoint_model_xl(
|
322 |
-
checkpoint_path: str,
|
323 |
-
weight_dtype: torch.dtype = torch.float32,
|
324 |
-
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
325 |
-
pipe = StableDiffusionXLPipeline.from_single_file(
|
326 |
-
checkpoint_path,
|
327 |
-
torch_dtype=weight_dtype,
|
328 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
329 |
-
)
|
330 |
-
|
331 |
-
unet = pipe.unet
|
332 |
-
vae = pipe.vae
|
333 |
-
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
|
334 |
-
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
335 |
-
if len(text_encoders) == 2:
|
336 |
-
text_encoders[1].pad_token_id = 0
|
337 |
-
|
338 |
-
del pipe
|
339 |
-
|
340 |
-
return tokenizers, text_encoders, unet, vae
|
341 |
-
|
342 |
-
|
343 |
-
def load_models_xl(
|
344 |
-
pretrained_model_name_or_path: str,
|
345 |
-
scheduler_name: str,
|
346 |
-
weight_dtype: torch.dtype = torch.float32,
|
347 |
-
noise_scheduler_kwargs=None,
|
348 |
-
) -> Tuple[
|
349 |
-
List[CLIPTokenizer],
|
350 |
-
List[SDXL_TEXT_ENCODER_TYPE],
|
351 |
-
UNet2DConditionModel,
|
352 |
-
SchedulerMixin,
|
353 |
-
]:
|
354 |
-
if pretrained_model_name_or_path.endswith(
|
355 |
-
".ckpt"
|
356 |
-
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
357 |
-
(tokenizers, text_encoders, unet, vae) = load_checkpoint_model_xl(
|
358 |
-
pretrained_model_name_or_path, weight_dtype
|
359 |
-
)
|
360 |
-
else: # diffusers
|
361 |
-
(tokenizers, text_encoders, unet, vae) = load_diffusers_model_xl(
|
362 |
-
pretrained_model_name_or_path, weight_dtype
|
363 |
-
)
|
364 |
-
if scheduler_name:
|
365 |
-
scheduler = create_noise_scheduler(scheduler_name, noise_scheduler_kwargs)
|
366 |
-
else:
|
367 |
-
scheduler = None
|
368 |
-
|
369 |
-
return tokenizers, text_encoders, unet, scheduler, vae
|
370 |
-
|
371 |
-
def create_noise_scheduler(
|
372 |
-
scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",
|
373 |
-
noise_scheduler_kwargs=None,
|
374 |
-
prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",
|
375 |
-
) -> SchedulerMixin:
|
376 |
-
name = scheduler_name.lower().replace(" ", "_")
|
377 |
-
if name.lower() == "ddim":
|
378 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
|
379 |
-
scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
380 |
-
elif name.lower() == "ddpm":
|
381 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
|
382 |
-
scheduler = DDPMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
383 |
-
elif name.lower() == "lms":
|
384 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
|
385 |
-
scheduler = LMSDiscreteScheduler(
|
386 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
387 |
-
)
|
388 |
-
elif name.lower() == "euler_a":
|
389 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
390 |
-
scheduler = EulerAncestralDiscreteScheduler(
|
391 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
392 |
-
)
|
393 |
-
elif name.lower() == "euler":
|
394 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
395 |
-
scheduler = EulerDiscreteScheduler(
|
396 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
397 |
-
)
|
398 |
-
elif name.lower() == "unipc":
|
399 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/unipc
|
400 |
-
scheduler = UniPCMultistepScheduler(
|
401 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
402 |
-
)
|
403 |
-
else:
|
404 |
-
raise ValueError(f"Unknown scheduler name: {name}")
|
405 |
-
|
406 |
-
return scheduler
|
407 |
-
|
408 |
-
|
409 |
-
def torch_gc():
|
410 |
-
import gc
|
411 |
-
|
412 |
-
gc.collect()
|
413 |
-
if torch.cuda.is_available():
|
414 |
-
with torch.cuda.device("cuda"):
|
415 |
-
torch.cuda.empty_cache()
|
416 |
-
torch.cuda.ipc_collect()
|
417 |
-
|
418 |
-
|
419 |
-
from enum import Enum
|
420 |
-
|
421 |
-
|
422 |
-
class CPUState(Enum):
|
423 |
-
GPU = 0
|
424 |
-
CPU = 1
|
425 |
-
MPS = 2
|
426 |
-
|
427 |
-
|
428 |
-
cpu_state = CPUState.GPU
|
429 |
-
xpu_available = False
|
430 |
-
directml_enabled = False
|
431 |
-
|
432 |
-
|
433 |
-
def is_intel_xpu():
|
434 |
-
global cpu_state
|
435 |
-
global xpu_available
|
436 |
-
if cpu_state == CPUState.GPU:
|
437 |
-
if xpu_available:
|
438 |
-
return True
|
439 |
-
return False
|
440 |
-
|
441 |
-
|
442 |
-
try:
|
443 |
-
import intel_extension_for_pytorch as ipex
|
444 |
-
|
445 |
-
if torch.xpu.is_available():
|
446 |
-
xpu_available = True
|
447 |
-
except:
|
448 |
-
pass
|
449 |
-
|
450 |
-
try:
|
451 |
-
if torch.backends.mps.is_available():
|
452 |
-
cpu_state = CPUState.MPS
|
453 |
-
import torch.mps
|
454 |
-
except:
|
455 |
-
pass
|
456 |
-
|
457 |
-
|
458 |
-
def get_torch_device():
|
459 |
-
global directml_enabled
|
460 |
-
global cpu_state
|
461 |
-
if directml_enabled:
|
462 |
-
global directml_device
|
463 |
-
return directml_device
|
464 |
-
if cpu_state == CPUState.MPS:
|
465 |
-
return torch.device("mps")
|
466 |
-
if cpu_state == CPUState.CPU:
|
467 |
-
return torch.device("cpu")
|
468 |
-
else:
|
469 |
-
if is_intel_xpu():
|
470 |
-
return torch.device("xpu")
|
471 |
-
else:
|
472 |
-
return torch.device(torch.cuda.current_device())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|