Lahiru Menikdiwela
commited on
Commit
·
173b5f1
1
Parent(s):
ab21bba
changes done according to llama model
Browse files- model.py +15 -13
- summarizer.py +32 -4
model.py
CHANGED
@@ -19,28 +19,30 @@ def get_local_model(model_name_or_path:str)->pipeline:
|
|
19 |
|
20 |
#print(f"Model is running on {device}")
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
model_name_or_path,
|
28 |
torch_dtype=torch.bfloat16,
|
29 |
# load_in_4bit = True,
|
30 |
token = hf_token
|
31 |
)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
logger.info(f"Summarization pipeline created and loaded to {device}")
|
42 |
|
43 |
-
return
|
44 |
|
45 |
def get_endpoint(api_key:str):
|
46 |
|
|
|
19 |
|
20 |
#print(f"Model is running on {device}")
|
21 |
|
22 |
+
#!!!!!Removed for Llama model
|
23 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
24 |
+
# model_name_or_path,
|
25 |
+
# token = hf_token
|
26 |
+
# )
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
model_name_or_path,
|
29 |
torch_dtype=torch.bfloat16,
|
30 |
# load_in_4bit = True,
|
31 |
token = hf_token
|
32 |
)
|
33 |
+
#!!!!!!!!!!!!!!!!!!!!!Removed for Llama model!!!!!!!!!!!!!!!!!!!!!!!
|
34 |
+
# pipe = pipeline(
|
35 |
+
# task = "summarization",
|
36 |
+
# model=model,
|
37 |
+
# tokenizer=tokenizer,
|
38 |
+
# device = device,
|
39 |
+
# max_new_tokens = 400,
|
40 |
+
# model_kwargs = {"max_length":16384, "max_new_tokens": 512},
|
41 |
+
# )
|
42 |
|
43 |
logger.info(f"Summarization pipeline created and loaded to {device}")
|
44 |
|
45 |
+
return model
|
46 |
|
47 |
def get_endpoint(api_key:str):
|
48 |
|
summarizer.py
CHANGED
@@ -18,9 +18,13 @@ def summarizer_init(model_name,model_type,api_key=None) -> None:
|
|
18 |
return tokenizer,base_summarizer
|
19 |
|
20 |
def summarizer_summarize(model_type,tokenizer, base_summarizer, text:str,summarizer_type = "map_reduce")->str:
|
21 |
-
prompt = "SUmmarize this by focusing numerical importance sentences dont omit numerical sentences.Include all numerical details input text:"
|
22 |
-
text =
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
if length_type =="short":
|
26 |
|
@@ -45,7 +49,31 @@ def summarizer_summarize(model_type,tokenizer, base_summarizer, text:str,summari
|
|
45 |
elif model_type == "local":
|
46 |
pipe = base_summarizer
|
47 |
start = time.time()
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
end = time.time()
|
50 |
print(f"Summary generation took {round((end-start),2)}s.")
|
51 |
return summary,round((end-start),2)
|
|
|
18 |
return tokenizer,base_summarizer
|
19 |
|
20 |
def summarizer_summarize(model_type,tokenizer, base_summarizer, text:str,summarizer_type = "map_reduce")->str:
|
21 |
+
# prompt = "SUmmarize this by focusing numerical importance sentences dont omit numerical sentences.Include all numerical details input text:"
|
22 |
+
text = text
|
23 |
+
|
24 |
+
#!!!!!!!!!!!!!!!!!!!Removed because map reduce is not suitable or take long time
|
25 |
+
# text_to_summarize,length_type = prepare_for_summarize(text,tokenizer)
|
26 |
+
length_type = "short"
|
27 |
+
text_to_summarize = text
|
28 |
|
29 |
if length_type =="short":
|
30 |
|
|
|
49 |
elif model_type == "local":
|
50 |
pipe = base_summarizer
|
51 |
start = time.time()
|
52 |
+
|
53 |
+
#!!!!!!!!!!!!!!!!!!!!Changes to llama model
|
54 |
+
input_text = text_to_summarize
|
55 |
+
chat = [
|
56 |
+
{ "role": "user",
|
57 |
+
"content": f"""
|
58 |
+
SUmmarize this by focusing numerical importance sentences in the perspective of financial executive. input text: {input_text}
|
59 |
+
""" },
|
60 |
+
]
|
61 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
62 |
+
inputs = tokenizer(prompt,
|
63 |
+
return_tensors="pt", truncation=True).to('cuda')
|
64 |
+
attention_mask = inputs["attention_mask"]
|
65 |
+
approximate_tokens = int(len(text)//10)
|
66 |
+
output = base_summarizer.generate(inputs['input_ids'],
|
67 |
+
attention_mask = attention_mask,
|
68 |
+
top_k=10, max_new_tokens=approximate_tokens,
|
69 |
+
pad_token_id = tokenizer.eos_token_id)
|
70 |
+
|
71 |
+
base_summary = tokenizer.batch_decode(output[:, inputs['input_ids'].shape[-1]:], skip_special_tokens=True)
|
72 |
+
summary = base_summary[0]
|
73 |
+
# summary = pipe(text_to_summarize)[0]['generated_text']
|
74 |
+
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1Changes finished for llama model
|
75 |
+
|
76 |
+
|
77 |
end = time.time()
|
78 |
print(f"Summary generation took {round((end-start),2)}s.")
|
79 |
return summary,round((end-start),2)
|