Maslov-Artem
commited on
Commit
·
c747562
1
Parent(s):
cb2adb5
Streamlit adjustment
Browse files- pages/review_predictor.py +43 -23
- pages/text_generator.py +17 -6
pages/review_predictor.py
CHANGED
@@ -7,37 +7,58 @@ import torch
|
|
7 |
import torch.nn as nn
|
8 |
import transformers
|
9 |
|
10 |
-
from model.funcs import (create_model_and_tokenizer,
|
11 |
-
predict_sentiment)
|
12 |
from model.model import LSTMConcatAttentionEmbed
|
13 |
from preprocessing.preprocessing import data_preprocessing
|
14 |
from preprocessing.rnn_preprocessing import preprocess_single_string
|
15 |
|
16 |
-
# Load preprocessing steps
|
17 |
-
with open("vectorizer.pkl", "rb") as f:
|
18 |
-
logreg_vectorizer = pickle.load(f)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
with open("model/vocab.json", "r") as f:
|
28 |
-
vocab_to_int = json.load(f)
|
29 |
|
30 |
-
|
31 |
-
int_to_vocab = json.load(f)
|
32 |
|
33 |
-
model_class = transformers.AutoModel
|
34 |
-
tokenizer_class = transformers.AutoTokenizer
|
35 |
-
pretrained_weights = "cointegrated/rubert-tiny2"
|
36 |
-
weights_path = "model/best_bert_weights.pth"
|
37 |
-
model = load_model(model_class, pretrained_weights, weights_path)
|
38 |
-
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
|
39 |
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def plot_and_predict(review: str, SEQ_LEN: int, model: nn.Module):
|
42 |
inp = preprocess_single_string(review, SEQ_LEN, vocab_to_int)
|
43 |
model.eval()
|
@@ -52,12 +73,12 @@ def preprocess_text_logreg(text):
|
|
52 |
clean_text = data_preprocessing(
|
53 |
text
|
54 |
) # Assuming data_preprocessing is your preprocessing function
|
55 |
-
print("Clean text ", clean_text)
|
56 |
vectorized_text = logreg_vectorizer.transform([" ".join(clean_text)])
|
57 |
return vectorized_text
|
58 |
|
59 |
|
60 |
# Define function for making predictions
|
|
|
61 |
def predict_sentiment_logreg(text):
|
62 |
# Preprocess input text
|
63 |
processed_text = preprocess_text_logreg(text)
|
@@ -68,7 +89,7 @@ def predict_sentiment_logreg(text):
|
|
68 |
|
69 |
metrics = {
|
70 |
"Models": ["Logistic Regression", "LSTM + attention", "ruBERTtiny2"],
|
71 |
-
"f1-macro score": [0.94376,
|
72 |
}
|
73 |
|
74 |
|
@@ -94,7 +115,6 @@ if st.button("Predict"):
|
|
94 |
)
|
95 |
elif model_type == "BERT":
|
96 |
prediction = predict_sentiment(text_input, model, tokenizer, "cpu")
|
97 |
-
st.write(prediction)
|
98 |
|
99 |
if prediction == 1:
|
100 |
st.write("prediction")
|
|
|
7 |
import torch.nn as nn
|
8 |
import transformers
|
9 |
|
10 |
+
from model.funcs import (create_model_and_tokenizer, execution_time,
|
11 |
+
load_model, predict_sentiment)
|
12 |
from model.model import LSTMConcatAttentionEmbed
|
13 |
from preprocessing.preprocessing import data_preprocessing
|
14 |
from preprocessing.rnn_preprocessing import preprocess_single_string
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
+
@st.cache_resource
|
18 |
+
def load_logreg():
|
19 |
+
with open("vectorizer.pkl", "rb") as f:
|
20 |
+
logreg_vectorizer = pickle.load(f)
|
21 |
|
22 |
+
with open("logreg_model.pkl", "rb") as f:
|
23 |
+
logreg_predictor = pickle.load(f)
|
24 |
+
return logreg_vectorizer, logreg_predictor
|
25 |
|
|
|
|
|
26 |
|
27 |
+
logreg_vectorizer, logreg_predictor = load_logreg()
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
@st.cache_resource
|
31 |
+
def load_lstm():
|
32 |
+
with open("model/vocab.json", "r") as f:
|
33 |
+
vocab_to_int = json.load(f)
|
34 |
|
35 |
+
with open("model/int_vocab.json", "r") as f:
|
36 |
+
int_to_vocab = json.load(f)
|
37 |
+
model_concat_embed = LSTMConcatAttentionEmbed()
|
38 |
+
model_concat_embed.load_state_dict(torch.load("model/model_weights.pt"))
|
39 |
+
|
40 |
+
return vocab_to_int, int_to_vocab, model_concat_embed
|
41 |
+
|
42 |
+
|
43 |
+
vocab_to_int, int_to_vocab, model_concat_embed = load_lstm()
|
44 |
+
|
45 |
+
|
46 |
+
@st.cache_resource
|
47 |
+
def load_bert():
|
48 |
+
model_class = transformers.AutoModel
|
49 |
+
tokenizer_class = transformers.AutoTokenizer
|
50 |
+
pretrained_weights = "cointegrated/rubert-tiny2"
|
51 |
+
weights_path = "model/best_bert_weights.pth"
|
52 |
+
model = load_model(model_class, pretrained_weights, weights_path)
|
53 |
+
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
|
54 |
+
|
55 |
+
return model, tokenizer
|
56 |
+
|
57 |
+
|
58 |
+
model, tokenizer = load_bert()
|
59 |
+
|
60 |
+
|
61 |
+
@execution_time
|
62 |
def plot_and_predict(review: str, SEQ_LEN: int, model: nn.Module):
|
63 |
inp = preprocess_single_string(review, SEQ_LEN, vocab_to_int)
|
64 |
model.eval()
|
|
|
73 |
clean_text = data_preprocessing(
|
74 |
text
|
75 |
) # Assuming data_preprocessing is your preprocessing function
|
|
|
76 |
vectorized_text = logreg_vectorizer.transform([" ".join(clean_text)])
|
77 |
return vectorized_text
|
78 |
|
79 |
|
80 |
# Define function for making predictions
|
81 |
+
@execution_time
|
82 |
def predict_sentiment_logreg(text):
|
83 |
# Preprocess input text
|
84 |
processed_text = preprocess_text_logreg(text)
|
|
|
89 |
|
90 |
metrics = {
|
91 |
"Models": ["Logistic Regression", "LSTM + attention", "ruBERTtiny2"],
|
92 |
+
"f1-macro score": [0.94376, 0.93317, 0.94070],
|
93 |
}
|
94 |
|
95 |
|
|
|
115 |
)
|
116 |
elif model_type == "BERT":
|
117 |
prediction = predict_sentiment(text_input, model, tokenizer, "cpu")
|
|
|
118 |
|
119 |
if prediction == 1:
|
120 |
st.write("prediction")
|
pages/text_generator.py
CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
|
|
|
|
|
5 |
|
6 |
@st.cache_data
|
7 |
def load_model():
|
@@ -13,11 +15,10 @@ def load_model():
|
|
13 |
|
14 |
|
15 |
tokenizer, model = load_model()
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
st.write("42")
|
21 |
promt = tokenizer.encode(promt, return_tensors="pt")
|
22 |
model.eval()
|
23 |
with torch.no_grad():
|
@@ -27,6 +28,16 @@ if generate:
|
|
27 |
num_beams=2,
|
28 |
temperature=1.5,
|
29 |
top_p=0.9,
|
|
|
30 |
)
|
31 |
out = list(map(tokenizer.decode, out))[0]
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
|
5 |
+
from model.funcs import execution_time
|
6 |
+
|
7 |
|
8 |
@st.cache_data
|
9 |
def load_model():
|
|
|
15 |
|
16 |
|
17 |
tokenizer, model = load_model()
|
18 |
+
|
19 |
+
|
20 |
+
@execution_time
|
21 |
+
def generate_text(promt):
|
|
|
22 |
promt = tokenizer.encode(promt, return_tensors="pt")
|
23 |
model.eval()
|
24 |
with torch.no_grad():
|
|
|
28 |
num_beams=2,
|
29 |
temperature=1.5,
|
30 |
top_p=0.9,
|
31 |
+
max_length=150,
|
32 |
)
|
33 |
out = list(map(tokenizer.decode, out))[0]
|
34 |
+
return out
|
35 |
+
|
36 |
+
|
37 |
+
promt = st.text_input("Ask a question")
|
38 |
+
generate = st.button("Generate")
|
39 |
+
if generate:
|
40 |
+
if not promt:
|
41 |
+
st.write("42")
|
42 |
+
else:
|
43 |
+
st.write(generate_text(promt))
|