File size: 11,509 Bytes
07d6419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
from PIL import Image
import numpy
from torch import LongTensor, FloatTensor
import torch
import torch.backends.cudnn, torch.backends.cuda
import json
import requests
from typing import Iterator
from .text_tokenizer import TextTokenizer
from .models import DalleBartEncoder, DalleBartDecoder, VQGanDetokenizer
import streamlit as st

torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count())
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = True

MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
IMAGE_TOKEN_COUNT = 256


class MinDalle:
    def __init__(
        self,
        models_root: str = 'pretrained',
        dtype: torch.dtype = torch.float32,
        device: str = None,
        is_mega: bool = True, 
        is_reusable: bool = True,
        is_verbose = True
    ):
        if device == None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        if is_verbose: print("using device", device)
        self.device = device
        self.is_mega = is_mega
        self.is_reusable = is_reusable
        self.dtype = dtype
        self.is_verbose = is_verbose
        self.text_token_count = 64
        self.layer_count = 24 if is_mega else 12
        self.attention_head_count = 32 if is_mega else 16
        self.embed_count = 2048 if is_mega else 1024
        self.glu_embed_count = 4096 if is_mega else 2730
        self.text_vocab_count = 50272 if is_mega else 50264
        self.image_vocab_count = 16415 if is_mega else 16384

        model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
        dalle_path = os.path.join(models_root, model_name)
        vqgan_path = os.path.join(models_root, 'vqgan')
        if not os.path.exists(dalle_path): os.makedirs(dalle_path)
        if not os.path.exists(vqgan_path): os.makedirs(vqgan_path)
        self.vocab_path = os.path.join(dalle_path, 'vocab.json')
        self.merges_path = os.path.join(dalle_path, 'merges.txt')
        self.encoder_params_path = os.path.join(dalle_path, 'encoder.pt')
        self.decoder_params_path = os.path.join(dalle_path, 'decoder.pt')
        self.detoker_params_path = os.path.join(vqgan_path, 'detoker.pt')

        self.init_tokenizer()
        if is_reusable:
            self.init_encoder()
            self.init_decoder()
            self.init_detokenizer()


    def download_tokenizer(self):
        if self.is_verbose: print("downloading tokenizer params")
        suffix = '' if self.is_mega else '_mini'
        _ = requests.get(MIN_DALLE_REPO + 'config.json') # trigger HF download
        vocab = requests.get(MIN_DALLE_REPO + 'vocab{}.json'.format(suffix))
        merges = requests.get(MIN_DALLE_REPO + 'merges{}.txt'.format(suffix))
        with open(self.vocab_path, 'wb') as f: f.write(vocab.content)
        with open(self.merges_path, 'wb') as f: f.write(merges.content)


    def download_encoder(self):
        if self.is_verbose: print("downloading encoder params")
        suffix = '' if self.is_mega else '_mini'
        params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
        with open(self.encoder_params_path, 'wb') as f: f.write(params.content)


    def download_decoder(self):
        if self.is_verbose: print("downloading decoder params")
        suffix = '' if self.is_mega else '_mini'
        params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
        with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
    

    def download_detokenizer(self):
        if self.is_verbose: print("downloading detokenizer params")
        params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
        with open(self.detoker_params_path, 'wb') as f: f.write(params.content)


    def init_tokenizer(self):
        is_downloaded = os.path.exists(self.vocab_path)
        is_downloaded &= os.path.exists(self.merges_path)
        if not is_downloaded: self.download_tokenizer()
        if self.is_verbose: print("intializing TextTokenizer")
        with open(self.vocab_path, 'r', encoding='utf8') as f:
            vocab = json.load(f)
        with open(self.merges_path, 'r', encoding='utf8') as f:
            merges = f.read().split("\n")[1:-1]
        self.tokenizer = TextTokenizer(vocab, merges)


    def init_encoder(self):
        is_downloaded = os.path.exists(self.encoder_params_path)
        if not is_downloaded: self.download_encoder()
        if self.is_verbose: print("initializing DalleBartEncoder")
        self.encoder = DalleBartEncoder(
            attention_head_count = self.attention_head_count,
            embed_count = self.embed_count,
            glu_embed_count = self.glu_embed_count,
            text_token_count = self.text_token_count,
            text_vocab_count = self.text_vocab_count,
            layer_count = self.layer_count,
            device=self.device
        ).to(self.dtype).eval()
        params = torch.load(self.encoder_params_path)
        self.encoder.load_state_dict(params, strict=False)
        del params
        self.encoder = self.encoder.to(device=self.device)


    def init_decoder(self):
        is_downloaded = os.path.exists(self.decoder_params_path)
        if not is_downloaded: self.download_decoder()
        if self.is_verbose: print("initializing DalleBartDecoder")
        self.decoder = DalleBartDecoder(
            image_vocab_count = self.image_vocab_count,
            attention_head_count = self.attention_head_count,
            embed_count = self.embed_count,
            glu_embed_count = self.glu_embed_count,
            layer_count = self.layer_count,
            device=self.device
        ).to(self.dtype).eval()
        params = torch.load(self.decoder_params_path)
        self.decoder.load_state_dict(params, strict=False)
        del params
        self.decoder = self.decoder.to(device=self.device)


    def init_detokenizer(self):
        is_downloaded = os.path.exists(self.detoker_params_path)
        if not is_downloaded: self.download_detokenizer()
        if self.is_verbose: print("initializing VQGanDetokenizer")
        self.detokenizer = VQGanDetokenizer().eval()
        params = torch.load(self.detoker_params_path)
        self.detokenizer.load_state_dict(params)
        del params
        self.detokenizer = self.detokenizer.to(device=self.device)


    def image_grid_from_tokens(
        self,
        image_tokens: LongTensor,
        is_seamless: bool,
        is_verbose: bool = False
    ) -> FloatTensor:
        if not self.is_reusable: del self.decoder
        torch.cuda.empty_cache()
        if not self.is_reusable: self.init_detokenizer()
        if is_verbose: print("detokenizing image")
        images = self.detokenizer.forward(is_seamless, image_tokens)
        if not self.is_reusable: del self.detokenizer
        return images


    def generate_raw_image_stream(
        self, 
        text: str, 
        seed: int,
        grid_size: int,
        progressive_outputs: bool = False,
        is_seamless: bool = False,
        temperature: float = 1,
        top_k: int = 256,
        supercondition_factor: int = 16,
        is_verbose: bool = False
    ) -> Iterator[FloatTensor]:
        image_count = grid_size ** 2
        if is_verbose: print("tokenizing text")
        tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
        if len(tokens) > self.text_token_count: 
            tokens = tokens[:self.text_token_count]
        if is_verbose: print("{} text tokens".format(len(tokens)), tokens)
        text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
        text_tokens[0, :2] = [tokens[0], tokens[-1]]
        text_tokens[1, :len(tokens)] = tokens
        text_tokens = torch.tensor(
            text_tokens, 
            dtype=torch.long, 
            device=self.device
        )

        if not self.is_reusable: self.init_encoder()
        if is_verbose: print("encoding text tokens")
        with torch.cuda.amp.autocast(dtype=self.dtype):
            encoder_state = self.encoder.forward(text_tokens)
        if not self.is_reusable: del self.encoder
        torch.cuda.empty_cache()

        if not self.is_reusable: self.init_decoder()

        with torch.cuda.amp.autocast(dtype=self.dtype):
            expanded_indices = [0] * image_count + [1] * image_count
            text_tokens = text_tokens[expanded_indices]
            encoder_state = encoder_state[expanded_indices]
            attention_mask = text_tokens.not_equal(1)
            attention_state = torch.zeros(
                size=(
                    self.layer_count,
                    image_count * 4,
                    IMAGE_TOKEN_COUNT,
                    self.embed_count
                ), 
                device=self.device
            )
            image_tokens = torch.full(
                (IMAGE_TOKEN_COUNT + 1, image_count), 
                self.image_vocab_count,
                dtype=torch.long,
                device=self.device
            )
            
            if seed > 0: torch.manual_seed(seed)

        token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=self.device)
        settings = torch.tensor(
            [temperature, top_k, supercondition_factor], 
            dtype=torch.float32,
            device=self.device
        )
        for i in range(IMAGE_TOKEN_COUNT):
            if(st.session_state.page != 0):
                break
            st.session_state.bar.progress(i/IMAGE_TOKEN_COUNT)

            torch.cuda.empty_cache()                
            with torch.cuda.amp.autocast(dtype=self.dtype):
                image_tokens[i + 1], attention_state = self.decoder.forward(
                    settings=settings,
                    attention_mask=attention_mask,
                    encoder_state=encoder_state,
                    attention_state=attention_state,
                    prev_tokens=image_tokens[i],
                    token_index=token_indices[[i]]
                )

            with torch.cuda.amp.autocast(dtype=torch.float32):
                if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
                    yield self.image_grid_from_tokens(
                        image_tokens=image_tokens[1:].T,
                        is_seamless=is_seamless,
                        is_verbose=is_verbose
                    )

    def generate_image_stream(self, *args, **kwargs) -> Iterator[Image.Image]:
        image_stream = self.generate_raw_image_stream(*args, **kwargs)
        for image in image_stream:
            image = image.to(torch.uint8).to('cpu').numpy()
            yield Image.fromarray(image)


    def generate_images_stream(self, *args, **kwargs) -> Iterator[FloatTensor]:
        image_stream = self.generate_raw_image_stream(*args, **kwargs)
        for image in image_stream:
            grid_size = kwargs['grid_size']
            image = image.view([grid_size * 256, grid_size, 256, 3])
            image = image.transpose(1, 0)
            image = image.reshape([grid_size ** 2, 2 ** 8, 2 ** 8, 3])
            yield image


    def generate_image(self, *args, **kwargs) -> Image.Image:
        image_stream = self.generate_image_stream(
            *args, **kwargs, 
            progressive_outputs=False
        )
        return next(image_stream)


    def generate_images(self, *args, **kwargs) -> Image.Image:
        images_stream = self.generate_images_stream(
            *args, **kwargs, 
            progressive_outputs=False
        )
        return next(images_stream)