ai_architecture / min_dalle /min_dalle.py
JMalott's picture
Upload min_dalle.py
07d6419
raw
history blame
11.5 kB
import os
from PIL import Image
import numpy
from torch import LongTensor, FloatTensor
import torch
import torch.backends.cudnn, torch.backends.cuda
import json
import requests
from typing import Iterator
from .text_tokenizer import TextTokenizer
from .models import DalleBartEncoder, DalleBartDecoder, VQGanDetokenizer
import streamlit as st
torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count())
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = True
MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
IMAGE_TOKEN_COUNT = 256
class MinDalle:
def __init__(
self,
models_root: str = 'pretrained',
dtype: torch.dtype = torch.float32,
device: str = None,
is_mega: bool = True,
is_reusable: bool = True,
is_verbose = True
):
if device == None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if is_verbose: print("using device", device)
self.device = device
self.is_mega = is_mega
self.is_reusable = is_reusable
self.dtype = dtype
self.is_verbose = is_verbose
self.text_token_count = 64
self.layer_count = 24 if is_mega else 12
self.attention_head_count = 32 if is_mega else 16
self.embed_count = 2048 if is_mega else 1024
self.glu_embed_count = 4096 if is_mega else 2730
self.text_vocab_count = 50272 if is_mega else 50264
self.image_vocab_count = 16415 if is_mega else 16384
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
dalle_path = os.path.join(models_root, model_name)
vqgan_path = os.path.join(models_root, 'vqgan')
if not os.path.exists(dalle_path): os.makedirs(dalle_path)
if not os.path.exists(vqgan_path): os.makedirs(vqgan_path)
self.vocab_path = os.path.join(dalle_path, 'vocab.json')
self.merges_path = os.path.join(dalle_path, 'merges.txt')
self.encoder_params_path = os.path.join(dalle_path, 'encoder.pt')
self.decoder_params_path = os.path.join(dalle_path, 'decoder.pt')
self.detoker_params_path = os.path.join(vqgan_path, 'detoker.pt')
self.init_tokenizer()
if is_reusable:
self.init_encoder()
self.init_decoder()
self.init_detokenizer()
def download_tokenizer(self):
if self.is_verbose: print("downloading tokenizer params")
suffix = '' if self.is_mega else '_mini'
_ = requests.get(MIN_DALLE_REPO + 'config.json') # trigger HF download
vocab = requests.get(MIN_DALLE_REPO + 'vocab{}.json'.format(suffix))
merges = requests.get(MIN_DALLE_REPO + 'merges{}.txt'.format(suffix))
with open(self.vocab_path, 'wb') as f: f.write(vocab.content)
with open(self.merges_path, 'wb') as f: f.write(merges.content)
def download_encoder(self):
if self.is_verbose: print("downloading encoder params")
suffix = '' if self.is_mega else '_mini'
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
with open(self.encoder_params_path, 'wb') as f: f.write(params.content)
def download_decoder(self):
if self.is_verbose: print("downloading decoder params")
suffix = '' if self.is_mega else '_mini'
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
def download_detokenizer(self):
if self.is_verbose: print("downloading detokenizer params")
params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
with open(self.detoker_params_path, 'wb') as f: f.write(params.content)
def init_tokenizer(self):
is_downloaded = os.path.exists(self.vocab_path)
is_downloaded &= os.path.exists(self.merges_path)
if not is_downloaded: self.download_tokenizer()
if self.is_verbose: print("intializing TextTokenizer")
with open(self.vocab_path, 'r', encoding='utf8') as f:
vocab = json.load(f)
with open(self.merges_path, 'r', encoding='utf8') as f:
merges = f.read().split("\n")[1:-1]
self.tokenizer = TextTokenizer(vocab, merges)
def init_encoder(self):
is_downloaded = os.path.exists(self.encoder_params_path)
if not is_downloaded: self.download_encoder()
if self.is_verbose: print("initializing DalleBartEncoder")
self.encoder = DalleBartEncoder(
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
text_token_count = self.text_token_count,
text_vocab_count = self.text_vocab_count,
layer_count = self.layer_count,
device=self.device
).to(self.dtype).eval()
params = torch.load(self.encoder_params_path)
self.encoder.load_state_dict(params, strict=False)
del params
self.encoder = self.encoder.to(device=self.device)
def init_decoder(self):
is_downloaded = os.path.exists(self.decoder_params_path)
if not is_downloaded: self.download_decoder()
if self.is_verbose: print("initializing DalleBartDecoder")
self.decoder = DalleBartDecoder(
image_vocab_count = self.image_vocab_count,
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
layer_count = self.layer_count,
device=self.device
).to(self.dtype).eval()
params = torch.load(self.decoder_params_path)
self.decoder.load_state_dict(params, strict=False)
del params
self.decoder = self.decoder.to(device=self.device)
def init_detokenizer(self):
is_downloaded = os.path.exists(self.detoker_params_path)
if not is_downloaded: self.download_detokenizer()
if self.is_verbose: print("initializing VQGanDetokenizer")
self.detokenizer = VQGanDetokenizer().eval()
params = torch.load(self.detoker_params_path)
self.detokenizer.load_state_dict(params)
del params
self.detokenizer = self.detokenizer.to(device=self.device)
def image_grid_from_tokens(
self,
image_tokens: LongTensor,
is_seamless: bool,
is_verbose: bool = False
) -> FloatTensor:
if not self.is_reusable: del self.decoder
torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if is_verbose: print("detokenizing image")
images = self.detokenizer.forward(is_seamless, image_tokens)
if not self.is_reusable: del self.detokenizer
return images
def generate_raw_image_stream(
self,
text: str,
seed: int,
grid_size: int,
progressive_outputs: bool = False,
is_seamless: bool = False,
temperature: float = 1,
top_k: int = 256,
supercondition_factor: int = 16,
is_verbose: bool = False
) -> Iterator[FloatTensor]:
image_count = grid_size ** 2
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
if len(tokens) > self.text_token_count:
tokens = tokens[:self.text_token_count]
if is_verbose: print("{} text tokens".format(len(tokens)), tokens)
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
text_tokens[0, :2] = [tokens[0], tokens[-1]]
text_tokens[1, :len(tokens)] = tokens
text_tokens = torch.tensor(
text_tokens,
dtype=torch.long,
device=self.device
)
if not self.is_reusable: self.init_encoder()
if is_verbose: print("encoding text tokens")
with torch.cuda.amp.autocast(dtype=self.dtype):
encoder_state = self.encoder.forward(text_tokens)
if not self.is_reusable: del self.encoder
torch.cuda.empty_cache()
if not self.is_reusable: self.init_decoder()
with torch.cuda.amp.autocast(dtype=self.dtype):
expanded_indices = [0] * image_count + [1] * image_count
text_tokens = text_tokens[expanded_indices]
encoder_state = encoder_state[expanded_indices]
attention_mask = text_tokens.not_equal(1)
attention_state = torch.zeros(
size=(
self.layer_count,
image_count * 4,
IMAGE_TOKEN_COUNT,
self.embed_count
),
device=self.device
)
image_tokens = torch.full(
(IMAGE_TOKEN_COUNT + 1, image_count),
self.image_vocab_count,
dtype=torch.long,
device=self.device
)
if seed > 0: torch.manual_seed(seed)
token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=self.device)
settings = torch.tensor(
[temperature, top_k, supercondition_factor],
dtype=torch.float32,
device=self.device
)
for i in range(IMAGE_TOKEN_COUNT):
if(st.session_state.page != 0):
break
st.session_state.bar.progress(i/IMAGE_TOKEN_COUNT)
torch.cuda.empty_cache()
with torch.cuda.amp.autocast(dtype=self.dtype):
image_tokens[i + 1], attention_state = self.decoder.forward(
settings=settings,
attention_mask=attention_mask,
encoder_state=encoder_state,
attention_state=attention_state,
prev_tokens=image_tokens[i],
token_index=token_indices[[i]]
)
with torch.cuda.amp.autocast(dtype=torch.float32):
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
yield self.image_grid_from_tokens(
image_tokens=image_tokens[1:].T,
is_seamless=is_seamless,
is_verbose=is_verbose
)
def generate_image_stream(self, *args, **kwargs) -> Iterator[Image.Image]:
image_stream = self.generate_raw_image_stream(*args, **kwargs)
for image in image_stream:
image = image.to(torch.uint8).to('cpu').numpy()
yield Image.fromarray(image)
def generate_images_stream(self, *args, **kwargs) -> Iterator[FloatTensor]:
image_stream = self.generate_raw_image_stream(*args, **kwargs)
for image in image_stream:
grid_size = kwargs['grid_size']
image = image.view([grid_size * 256, grid_size, 256, 3])
image = image.transpose(1, 0)
image = image.reshape([grid_size ** 2, 2 ** 8, 2 ** 8, 3])
yield image
def generate_image(self, *args, **kwargs) -> Image.Image:
image_stream = self.generate_image_stream(
*args, **kwargs,
progressive_outputs=False
)
return next(image_stream)
def generate_images(self, *args, **kwargs) -> Image.Image:
images_stream = self.generate_images_stream(
*args, **kwargs,
progressive_outputs=False
)
return next(images_stream)