Spaces:
Runtime error
Runtime error
Update min_dalle/min_dalle.py
Browse files- min_dalle/min_dalle.py +12 -26
min_dalle/min_dalle.py
CHANGED
@@ -10,9 +10,6 @@ from typing import Iterator
|
|
10 |
from .text_tokenizer import TextTokenizer
|
11 |
from .models import DalleBartEncoder, DalleBartDecoder, VQGanDetokenizer
|
12 |
import streamlit as st
|
13 |
-
import time
|
14 |
-
|
15 |
-
import tracemalloc
|
16 |
|
17 |
torch.set_grad_enabled(False)
|
18 |
torch.set_num_threads(os.cpu_count())
|
@@ -24,7 +21,6 @@ IMAGE_TOKEN_COUNT = 256
|
|
24 |
|
25 |
|
26 |
class MinDalle:
|
27 |
-
@st.cache
|
28 |
def __init__(
|
29 |
self,
|
30 |
models_root: str = 'pretrained',
|
@@ -67,6 +63,7 @@ class MinDalle:
|
|
67 |
self.init_decoder()
|
68 |
self.init_detokenizer()
|
69 |
|
|
|
70 |
def download_tokenizer(self):
|
71 |
if self.is_verbose: print("downloading tokenizer params")
|
72 |
suffix = '' if self.is_mega else '_mini'
|
@@ -76,23 +73,27 @@ class MinDalle:
|
|
76 |
with open(self.vocab_path, 'wb') as f: f.write(vocab.content)
|
77 |
with open(self.merges_path, 'wb') as f: f.write(merges.content)
|
78 |
|
|
|
79 |
def download_encoder(self):
|
80 |
if self.is_verbose: print("downloading encoder params")
|
81 |
suffix = '' if self.is_mega else '_mini'
|
82 |
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
|
83 |
with open(self.encoder_params_path, 'wb') as f: f.write(params.content)
|
84 |
|
|
|
85 |
def download_decoder(self):
|
86 |
if self.is_verbose: print("downloading decoder params")
|
87 |
suffix = '' if self.is_mega else '_mini'
|
88 |
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
|
89 |
with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
|
90 |
|
|
|
91 |
def download_detokenizer(self):
|
92 |
if self.is_verbose: print("downloading detokenizer params")
|
93 |
params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
|
94 |
with open(self.detoker_params_path, 'wb') as f: f.write(params.content)
|
95 |
|
|
|
96 |
def init_tokenizer(self):
|
97 |
is_downloaded = os.path.exists(self.vocab_path)
|
98 |
is_downloaded &= os.path.exists(self.merges_path)
|
@@ -104,6 +105,7 @@ class MinDalle:
|
|
104 |
merges = f.read().split("\n")[1:-1]
|
105 |
self.tokenizer = TextTokenizer(vocab, merges)
|
106 |
|
|
|
107 |
def init_encoder(self):
|
108 |
is_downloaded = os.path.exists(self.encoder_params_path)
|
109 |
if not is_downloaded: self.download_encoder()
|
@@ -122,6 +124,7 @@ class MinDalle:
|
|
122 |
del params
|
123 |
self.encoder = self.encoder.to(device=self.device)
|
124 |
|
|
|
125 |
def init_decoder(self):
|
126 |
is_downloaded = os.path.exists(self.decoder_params_path)
|
127 |
if not is_downloaded: self.download_decoder()
|
@@ -138,7 +141,8 @@ class MinDalle:
|
|
138 |
self.decoder.load_state_dict(params, strict=False)
|
139 |
del params
|
140 |
self.decoder = self.decoder.to(device=self.device)
|
141 |
-
|
|
|
142 |
def init_detokenizer(self):
|
143 |
is_downloaded = os.path.exists(self.detoker_params_path)
|
144 |
if not is_downloaded: self.download_detokenizer()
|
@@ -230,17 +234,12 @@ class MinDalle:
|
|
230 |
dtype=torch.float32,
|
231 |
device=self.device
|
232 |
)
|
233 |
-
|
234 |
-
tracemalloc.start()
|
235 |
-
|
236 |
-
for i in range( IMAGE_TOKEN_COUNT ):
|
237 |
-
|
238 |
if(st.session_state.page != 0):
|
239 |
break
|
240 |
st.session_state.bar.progress(i/IMAGE_TOKEN_COUNT)
|
241 |
|
242 |
torch.cuda.empty_cache()
|
243 |
-
|
244 |
with torch.cuda.amp.autocast(dtype=self.dtype):
|
245 |
image_tokens[i + 1], attention_state = self.decoder.forward(
|
246 |
settings=settings,
|
@@ -250,27 +249,14 @@ class MinDalle:
|
|
250 |
prev_tokens=image_tokens[i],
|
251 |
token_index=token_indices[[i]]
|
252 |
)
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
|
257 |
-
with torch.cuda.amp.autocast(dtype=torch.
|
258 |
-
if ((i + 1) %
|
259 |
yield self.image_grid_from_tokens(
|
260 |
image_tokens=image_tokens[1:].T,
|
261 |
is_seamless=is_seamless,
|
262 |
is_verbose=is_verbose
|
263 |
)
|
264 |
-
|
265 |
-
# displaying the memory
|
266 |
-
print(tracemalloc.get_traced_memory())
|
267 |
-
|
268 |
-
# stopping the library
|
269 |
-
tracemalloc.stop()
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
|
275 |
def generate_image_stream(self, *args, **kwargs) -> Iterator[Image.Image]:
|
276 |
image_stream = self.generate_raw_image_stream(*args, **kwargs)
|
|
|
10 |
from .text_tokenizer import TextTokenizer
|
11 |
from .models import DalleBartEncoder, DalleBartDecoder, VQGanDetokenizer
|
12 |
import streamlit as st
|
|
|
|
|
|
|
13 |
|
14 |
torch.set_grad_enabled(False)
|
15 |
torch.set_num_threads(os.cpu_count())
|
|
|
21 |
|
22 |
|
23 |
class MinDalle:
|
|
|
24 |
def __init__(
|
25 |
self,
|
26 |
models_root: str = 'pretrained',
|
|
|
63 |
self.init_decoder()
|
64 |
self.init_detokenizer()
|
65 |
|
66 |
+
|
67 |
def download_tokenizer(self):
|
68 |
if self.is_verbose: print("downloading tokenizer params")
|
69 |
suffix = '' if self.is_mega else '_mini'
|
|
|
73 |
with open(self.vocab_path, 'wb') as f: f.write(vocab.content)
|
74 |
with open(self.merges_path, 'wb') as f: f.write(merges.content)
|
75 |
|
76 |
+
|
77 |
def download_encoder(self):
|
78 |
if self.is_verbose: print("downloading encoder params")
|
79 |
suffix = '' if self.is_mega else '_mini'
|
80 |
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
|
81 |
with open(self.encoder_params_path, 'wb') as f: f.write(params.content)
|
82 |
|
83 |
+
|
84 |
def download_decoder(self):
|
85 |
if self.is_verbose: print("downloading decoder params")
|
86 |
suffix = '' if self.is_mega else '_mini'
|
87 |
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
|
88 |
with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
|
89 |
|
90 |
+
|
91 |
def download_detokenizer(self):
|
92 |
if self.is_verbose: print("downloading detokenizer params")
|
93 |
params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
|
94 |
with open(self.detoker_params_path, 'wb') as f: f.write(params.content)
|
95 |
|
96 |
+
|
97 |
def init_tokenizer(self):
|
98 |
is_downloaded = os.path.exists(self.vocab_path)
|
99 |
is_downloaded &= os.path.exists(self.merges_path)
|
|
|
105 |
merges = f.read().split("\n")[1:-1]
|
106 |
self.tokenizer = TextTokenizer(vocab, merges)
|
107 |
|
108 |
+
|
109 |
def init_encoder(self):
|
110 |
is_downloaded = os.path.exists(self.encoder_params_path)
|
111 |
if not is_downloaded: self.download_encoder()
|
|
|
124 |
del params
|
125 |
self.encoder = self.encoder.to(device=self.device)
|
126 |
|
127 |
+
|
128 |
def init_decoder(self):
|
129 |
is_downloaded = os.path.exists(self.decoder_params_path)
|
130 |
if not is_downloaded: self.download_decoder()
|
|
|
141 |
self.decoder.load_state_dict(params, strict=False)
|
142 |
del params
|
143 |
self.decoder = self.decoder.to(device=self.device)
|
144 |
+
|
145 |
+
|
146 |
def init_detokenizer(self):
|
147 |
is_downloaded = os.path.exists(self.detoker_params_path)
|
148 |
if not is_downloaded: self.download_detokenizer()
|
|
|
234 |
dtype=torch.float32,
|
235 |
device=self.device
|
236 |
)
|
237 |
+
for i in range(IMAGE_TOKEN_COUNT):
|
|
|
|
|
|
|
|
|
238 |
if(st.session_state.page != 0):
|
239 |
break
|
240 |
st.session_state.bar.progress(i/IMAGE_TOKEN_COUNT)
|
241 |
|
242 |
torch.cuda.empty_cache()
|
|
|
243 |
with torch.cuda.amp.autocast(dtype=self.dtype):
|
244 |
image_tokens[i + 1], attention_state = self.decoder.forward(
|
245 |
settings=settings,
|
|
|
249 |
prev_tokens=image_tokens[i],
|
250 |
token_index=token_indices[[i]]
|
251 |
)
|
|
|
|
|
|
|
252 |
|
253 |
+
with torch.cuda.amp.autocast(dtype=torch.float32):
|
254 |
+
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
|
255 |
yield self.image_grid_from_tokens(
|
256 |
image_tokens=image_tokens[1:].T,
|
257 |
is_seamless=is_seamless,
|
258 |
is_verbose=is_verbose
|
259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
def generate_image_stream(self, *args, **kwargs) -> Iterator[Image.Image]:
|
262 |
image_stream = self.generate_raw_image_stream(*args, **kwargs)
|