Spaces:
Running
on
Zero
Running
on
Zero
Upload pipline_StableDiffusionXL_ConsistentID.py
Browse files
pipline_StableDiffusionXL_ConsistentID.py
ADDED
@@ -0,0 +1,701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
2 |
+
import cv2
|
3 |
+
import PIL
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
from insightface.app import FaceAnalysis
|
9 |
+
### insight-face installation can be found at https://github.com/deepinsight/insightface
|
10 |
+
from safetensors import safe_open
|
11 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
12 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
13 |
+
from diffusers.utils import _get_model_file
|
14 |
+
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
|
15 |
+
from functions import ProjPlusModel, masks_for_unique_values
|
16 |
+
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
|
17 |
+
### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file
|
18 |
+
### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
|
19 |
+
### Thanks for the open source of face-parsing model.
|
20 |
+
from models.BiSeNet.model import BiSeNet # resnet tensorflow
|
21 |
+
import pdb
|
22 |
+
######################################
|
23 |
+
########## add for sdxl
|
24 |
+
######################################
|
25 |
+
from diffusers import StableDiffusionXLPipeline
|
26 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
27 |
+
######################################
|
28 |
+
########## add for llava
|
29 |
+
######################################
|
30 |
+
# import sys
|
31 |
+
# sys.path.append("./Llava1.5/LLaVA")
|
32 |
+
# from llava.model.builder import load_pretrained_model
|
33 |
+
# from llava.mm_utils import get_model_name_from_path
|
34 |
+
# from llava.eval.run_llava import eval_model
|
35 |
+
|
36 |
+
PipelineImageInput = Union[
|
37 |
+
PIL.Image.Image,
|
38 |
+
torch.FloatTensor,
|
39 |
+
List[PIL.Image.Image],
|
40 |
+
List[torch.FloatTensor],
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
class ConsistentIDStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
45 |
+
|
46 |
+
@validate_hf_hub_args
|
47 |
+
def load_ConsistentID_model(
|
48 |
+
self,
|
49 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
50 |
+
weight_name: str,
|
51 |
+
subfolder: str = '',
|
52 |
+
trigger_word_ID: str = '<|image|>',
|
53 |
+
trigger_word_facial: str = '<|facial|>',
|
54 |
+
image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K', # Import CLIP pretrained model
|
55 |
+
bise_net_cp: str = 'JackAILab/ConsistentID/face_parsing.pth',
|
56 |
+
torch_dtype = torch.float16,
|
57 |
+
num_tokens = 4,
|
58 |
+
lora_rank= 128,
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
self.lora_rank = lora_rank
|
62 |
+
self.torch_dtype = torch_dtype
|
63 |
+
self.num_tokens = num_tokens
|
64 |
+
self.set_ip_adapter()
|
65 |
+
self.image_encoder_path = image_encoder_path
|
66 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
67 |
+
self.device, dtype=self.torch_dtype
|
68 |
+
)
|
69 |
+
self.clip_image_processor = CLIPImageProcessor()
|
70 |
+
self.id_image_processor = CLIPImageProcessor()
|
71 |
+
self.crop_size = 512
|
72 |
+
|
73 |
+
# FaceID
|
74 |
+
self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) ### root="/root/.insightface/models/buffalo_l"
|
75 |
+
self.app.prepare(ctx_id=0, det_size=(512, 512)) ### (640, 640)
|
76 |
+
|
77 |
+
### BiSeNet
|
78 |
+
self.bise_net = BiSeNet(n_classes = 19)
|
79 |
+
self.bise_net.cuda()
|
80 |
+
self.bise_net_cp= bise_net_cp # Import BiSeNet model
|
81 |
+
self.bise_net.load_state_dict(torch.load(self.bise_net_cp)) # , map_location="cpu"
|
82 |
+
self.bise_net.eval()
|
83 |
+
# Colors for all 20 parts
|
84 |
+
self.part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
|
85 |
+
[255, 0, 85], [255, 0, 170],
|
86 |
+
[0, 255, 0], [85, 255, 0], [170, 255, 0],
|
87 |
+
[0, 255, 85], [0, 255, 170],
|
88 |
+
[0, 0, 255], [85, 0, 255], [170, 0, 255],
|
89 |
+
[0, 85, 255], [0, 170, 255],
|
90 |
+
[255, 255, 0], [255, 255, 85], [255, 255, 170],
|
91 |
+
[255, 0, 255], [255, 85, 255], [255, 170, 255],
|
92 |
+
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
93 |
+
|
94 |
+
### LLVA Optional
|
95 |
+
self.llva_model_path = "" #TODO import llava weights
|
96 |
+
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
|
97 |
+
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
|
98 |
+
|
99 |
+
self.FacialEncoder = FacialEncoder(self.image_encoder, embedding_dim=1280, output_dim=2048, embed_dim=2048).to(self.device, dtype=self.torch_dtype)
|
100 |
+
|
101 |
+
# Load the main state dict first.
|
102 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
103 |
+
force_download = kwargs.pop("force_download", False)
|
104 |
+
resume_download = kwargs.pop("resume_download", False)
|
105 |
+
proxies = kwargs.pop("proxies", None)
|
106 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
107 |
+
token = kwargs.pop("token", None)
|
108 |
+
revision = kwargs.pop("revision", None)
|
109 |
+
|
110 |
+
user_agent = {
|
111 |
+
"file_type": "attn_procs_weights",
|
112 |
+
"framework": "pytorch",
|
113 |
+
}
|
114 |
+
|
115 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
116 |
+
model_file = _get_model_file(
|
117 |
+
pretrained_model_name_or_path_or_dict,
|
118 |
+
weights_name=weight_name,
|
119 |
+
cache_dir=cache_dir,
|
120 |
+
force_download=force_download,
|
121 |
+
resume_download=resume_download,
|
122 |
+
proxies=proxies,
|
123 |
+
local_files_only=local_files_only,
|
124 |
+
use_auth_token=token,
|
125 |
+
revision=revision,
|
126 |
+
subfolder=subfolder,
|
127 |
+
user_agent=user_agent,
|
128 |
+
)
|
129 |
+
if weight_name.endswith(".safetensors"):
|
130 |
+
state_dict = {"image_proj_model": {}, "adapter_modules": {}, "FacialEncoder": {}}
|
131 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
132 |
+
for key in f.keys():
|
133 |
+
if key.startswith("unet"):
|
134 |
+
pass
|
135 |
+
elif key.startswith("image_proj_model"):
|
136 |
+
state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key)
|
137 |
+
elif key.startswith("adapter_modules"):
|
138 |
+
state_dict["adapter_modules"][key.replace("adapter_modules.", "")] = f.get_tensor(key)
|
139 |
+
elif key.startswith("FacialEncoder"):
|
140 |
+
state_dict["FacialEncoder"][key.replace("FacialEncoder.", "")] = f.get_tensor(key)
|
141 |
+
else:
|
142 |
+
state_dict = torch.load(model_file, map_location="cuda")
|
143 |
+
else:
|
144 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
145 |
+
|
146 |
+
|
147 |
+
self.trigger_word_ID = trigger_word_ID
|
148 |
+
self.trigger_word_facial = trigger_word_facial
|
149 |
+
|
150 |
+
self.image_proj_model = ProjPlusModel(
|
151 |
+
cross_attention_dim=self.unet.config.cross_attention_dim,
|
152 |
+
id_embeddings_dim=512,
|
153 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
154 |
+
num_tokens=self.num_tokens, # 4
|
155 |
+
).to(self.device, dtype=self.torch_dtype)
|
156 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj_model"], strict=True)
|
157 |
+
|
158 |
+
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
|
159 |
+
ip_layers.load_state_dict(state_dict["adapter_modules"], strict=True)
|
160 |
+
self.FacialEncoder.load_state_dict(state_dict["FacialEncoder"], strict=True)
|
161 |
+
print(f"Successfully loaded weights from checkpoint")
|
162 |
+
|
163 |
+
# Add trigger word token
|
164 |
+
if self.tokenizer is not None:
|
165 |
+
self.tokenizer.add_tokens([self.trigger_word_ID], special_tokens=True)
|
166 |
+
self.tokenizer.add_tokens([self.trigger_word_facial], special_tokens=True)
|
167 |
+
|
168 |
+
######################################
|
169 |
+
########## add for sdxl
|
170 |
+
######################################
|
171 |
+
### (1) load lora into models
|
172 |
+
# print(f"Loading ConsistentID components lora_weights from [{pretrained_model_name_or_path_or_dict}]")
|
173 |
+
# self.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker")
|
174 |
+
|
175 |
+
### (2) Add trigger word token for tokenizer_2
|
176 |
+
self.tokenizer_2.add_tokens([self.trigger_word_ID], special_tokens=True)
|
177 |
+
|
178 |
+
def set_ip_adapter(self):
|
179 |
+
unet = self.unet
|
180 |
+
attn_procs = {}
|
181 |
+
for name in unet.attn_processors.keys():
|
182 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
183 |
+
if name.startswith("mid_block"):
|
184 |
+
hidden_size = unet.config.block_out_channels[-1]
|
185 |
+
elif name.startswith("up_blocks"):
|
186 |
+
block_id = int(name[len("up_blocks.")])
|
187 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
188 |
+
elif name.startswith("down_blocks"):
|
189 |
+
block_id = int(name[len("down_blocks.")])
|
190 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
191 |
+
if cross_attention_dim is None:
|
192 |
+
attn_procs[name] = Consistent_AttProcessor(
|
193 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
|
194 |
+
).to(self.device, dtype=self.torch_dtype)
|
195 |
+
else:
|
196 |
+
attn_procs[name] = Consistent_IPAttProcessor(
|
197 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
|
198 |
+
).to(self.device, dtype=self.torch_dtype)
|
199 |
+
|
200 |
+
unet.set_attn_processor(attn_procs)
|
201 |
+
|
202 |
+
@torch.inference_mode()
|
203 |
+
def get_facial_embeds(self, prompt_embeds, negative_prompt_embeds, facial_clip_images, facial_token_masks, valid_facial_token_idx_mask):
|
204 |
+
|
205 |
+
hidden_states = []
|
206 |
+
uncond_hidden_states = []
|
207 |
+
for facial_clip_image in facial_clip_images:
|
208 |
+
hidden_state = self.image_encoder(facial_clip_image.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2]
|
209 |
+
uncond_hidden_state = self.image_encoder(torch.zeros_like(facial_clip_image, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2]
|
210 |
+
hidden_states.append(hidden_state)
|
211 |
+
uncond_hidden_states.append(uncond_hidden_state)
|
212 |
+
multi_facial_embeds = torch.stack(hidden_states)
|
213 |
+
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
|
214 |
+
|
215 |
+
# condition
|
216 |
+
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
217 |
+
|
218 |
+
# uncondition
|
219 |
+
uncond_facial_prompt_embeds = self.FacialEncoder(negative_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
220 |
+
|
221 |
+
return facial_prompt_embeds, uncond_facial_prompt_embeds
|
222 |
+
|
223 |
+
@torch.inference_mode()
|
224 |
+
def get_image_embeds(self, faceid_embeds, face_image, s_scale=1.0, shortcut=False):
|
225 |
+
|
226 |
+
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
227 |
+
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
|
228 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
229 |
+
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
230 |
+
|
231 |
+
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
232 |
+
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
233 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
234 |
+
|
235 |
+
return image_prompt_tokens, uncond_image_prompt_embeds
|
236 |
+
|
237 |
+
def set_scale(self, scale):
|
238 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
239 |
+
if isinstance(attn_processor, Consistent_IPAttProcessor):
|
240 |
+
attn_processor.scale = scale
|
241 |
+
|
242 |
+
@torch.inference_mode()
|
243 |
+
def get_prepare_faceid(self, input_image_path=None):
|
244 |
+
faceid_image = cv2.imread(input_image_path)
|
245 |
+
face_info = self.app.get(faceid_image)
|
246 |
+
if face_info==[]:
|
247 |
+
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
|
248 |
+
else:
|
249 |
+
faceid_embeds = torch.from_numpy(face_info[0].normed_embedding).unsqueeze(0)
|
250 |
+
|
251 |
+
# print(f"faceid_embeds is : {faceid_embeds}")
|
252 |
+
return faceid_embeds
|
253 |
+
|
254 |
+
@torch.inference_mode()
|
255 |
+
def parsing_face_mask(self, raw_image_refer):
|
256 |
+
|
257 |
+
to_tensor = transforms.Compose([
|
258 |
+
transforms.ToTensor(),
|
259 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
260 |
+
])
|
261 |
+
to_pil = transforms.ToPILImage()
|
262 |
+
|
263 |
+
with torch.no_grad():
|
264 |
+
### change sdxl
|
265 |
+
image = raw_image_refer.resize((1280, 1280), Image.BILINEAR)
|
266 |
+
image_resize_PIL = image
|
267 |
+
img = to_tensor(image)
|
268 |
+
img = torch.unsqueeze(img, 0)
|
269 |
+
img = img.float().cuda()
|
270 |
+
out = self.bise_net(img)[0]
|
271 |
+
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
|
272 |
+
|
273 |
+
im = np.array(image_resize_PIL)
|
274 |
+
vis_im = im.copy().astype(np.uint8)
|
275 |
+
stride=1
|
276 |
+
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
277 |
+
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
278 |
+
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
279 |
+
|
280 |
+
num_of_class = np.max(vis_parsing_anno)
|
281 |
+
|
282 |
+
for pi in range(1, num_of_class + 1): # num_of_class=17 pi=1~16
|
283 |
+
index = np.where(vis_parsing_anno == pi)
|
284 |
+
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
|
285 |
+
|
286 |
+
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
287 |
+
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
288 |
+
|
289 |
+
return vis_parsing_anno_color, vis_parsing_anno
|
290 |
+
|
291 |
+
@torch.inference_mode()
|
292 |
+
def get_prepare_llva_caption(self, input_image_file, model_path=None, prompt=None):
|
293 |
+
|
294 |
+
### Optional: Use the LLaVA
|
295 |
+
# args = type('Args', (), {
|
296 |
+
# "model_path": self.llva_model_path,
|
297 |
+
# "model_base": None,
|
298 |
+
# "model_name": get_model_name_from_path(self.llva_model_path),
|
299 |
+
# "query": self.llva_prompt,
|
300 |
+
# "conv_mode": None,
|
301 |
+
# "image_file": input_image_file,
|
302 |
+
# "sep": ",",
|
303 |
+
# "temperature": 0,
|
304 |
+
# "top_p": None,
|
305 |
+
# "num_beams": 1,
|
306 |
+
# "max_new_tokens": 512
|
307 |
+
# })()
|
308 |
+
# face_caption = eval_model(args, self.llva_tokenizer, self.llva_model, self.llva_image_processor)
|
309 |
+
|
310 |
+
### Use built-in template
|
311 |
+
face_caption = "The person has one face, one nose, two eyes, two ears, and a mouth."
|
312 |
+
|
313 |
+
return face_caption
|
314 |
+
|
315 |
+
@torch.inference_mode()
|
316 |
+
def get_prepare_facemask(self, input_image_file):
|
317 |
+
|
318 |
+
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
|
319 |
+
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
|
320 |
+
|
321 |
+
key_parsing_mask_list = {}
|
322 |
+
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
|
323 |
+
processed_keys = set()
|
324 |
+
for key, mask_image in parsing_mask_list.items():
|
325 |
+
if key in key_list:
|
326 |
+
if "_" in key:
|
327 |
+
prefix = key.split("_")[1]
|
328 |
+
if prefix in processed_keys:
|
329 |
+
continue
|
330 |
+
else:
|
331 |
+
key_parsing_mask_list[key] = mask_image
|
332 |
+
processed_keys.add(prefix)
|
333 |
+
|
334 |
+
key_parsing_mask_list[key] = mask_image
|
335 |
+
|
336 |
+
return key_parsing_mask_list, vis_parsing_anno_color
|
337 |
+
|
338 |
+
def encode_prompt_with_trigger_word(
|
339 |
+
self,
|
340 |
+
prompt: str,
|
341 |
+
face_caption: str,
|
342 |
+
key_parsing_mask_list = None,
|
343 |
+
image_token = "<|image|>",
|
344 |
+
facial_token = "<|facial|>",
|
345 |
+
max_num_facials = 5,
|
346 |
+
num_id_images: int = 1,
|
347 |
+
device: Optional[torch.device] = None,
|
348 |
+
):
|
349 |
+
device = device or self._execution_device
|
350 |
+
|
351 |
+
# pdb.set_trace()
|
352 |
+
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
|
353 |
+
|
354 |
+
prompt_face = prompt + "; Detail:" + face_caption_align
|
355 |
+
|
356 |
+
max_text_length=330
|
357 |
+
if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, padding="max_length",truncation=False,return_tensors="pt").input_ids[0])!=77:
|
358 |
+
prompt_face = "; Detail:" + face_caption_align + " Caption:" + prompt
|
359 |
+
|
360 |
+
if len(face_caption)>max_text_length:
|
361 |
+
prompt_face = prompt
|
362 |
+
face_caption_align = ""
|
363 |
+
|
364 |
+
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
|
365 |
+
tokenizer = self.tokenizer
|
366 |
+
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
|
367 |
+
image_token_id = None
|
368 |
+
|
369 |
+
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
|
370 |
+
prompt_face, image_token_id, facial_token_id, tokenizer)
|
371 |
+
|
372 |
+
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
|
373 |
+
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
|
374 |
+
|
375 |
+
######################################
|
376 |
+
########## add for sdxl
|
377 |
+
######################################
|
378 |
+
tokenizer_2 = self.tokenizer_2
|
379 |
+
facial_token_id2 = tokenizer.convert_tokens_to_ids(facial_token)
|
380 |
+
image_token_id2 = None
|
381 |
+
clean_input_id2, image_token_mask2, facial_token_mask2 = tokenize_and_mask_noun_phrases_ends(
|
382 |
+
prompt_face, image_token_id2, facial_token_id2, tokenizer_2)
|
383 |
+
|
384 |
+
image_token_idx2, image_token_idx_mask2, facial_token_idx2, facial_token_idx_mask2 = prepare_image_token_idx(
|
385 |
+
image_token_mask2, facial_token_mask2, num_id_images, max_num_facials )
|
386 |
+
|
387 |
+
return prompt_text_only, clean_input_id, clean_input_id2, key_parsing_mask_list_align, facial_token_mask, facial_token_idx, facial_token_idx_mask
|
388 |
+
|
389 |
+
@torch.inference_mode()
|
390 |
+
def get_prepare_clip_image(self, input_image_file, key_parsing_mask_list, image_size=512, max_num_facials=5, change_facial=True):
|
391 |
+
|
392 |
+
facial_mask = []
|
393 |
+
facial_clip_image = []
|
394 |
+
transform_mask = transforms.Compose([transforms.CenterCrop(size=image_size), transforms.ToTensor(),])
|
395 |
+
clip_image_processor = CLIPImageProcessor()
|
396 |
+
|
397 |
+
num_facial_part = len(key_parsing_mask_list)
|
398 |
+
|
399 |
+
for key in key_parsing_mask_list:
|
400 |
+
key_mask=key_parsing_mask_list[key]
|
401 |
+
facial_mask.append(transform_mask(key_mask))
|
402 |
+
key_mask_raw_image = fetch_mask_raw_image(input_image_file,key_mask)
|
403 |
+
parsing_clip_image = clip_image_processor(images=key_mask_raw_image, return_tensors="pt").pixel_values
|
404 |
+
facial_clip_image.append(parsing_clip_image)
|
405 |
+
|
406 |
+
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
|
407 |
+
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
|
408 |
+
|
409 |
+
if num_facial_part < max_num_facials:
|
410 |
+
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
|
411 |
+
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
|
412 |
+
|
413 |
+
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
|
414 |
+
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
|
415 |
+
|
416 |
+
return facial_clip_image, facial_mask
|
417 |
+
|
418 |
+
@torch.no_grad()
|
419 |
+
def __call__(
|
420 |
+
self,
|
421 |
+
prompt: Union[str, List[str]] = None,
|
422 |
+
face_caption: Union[str, List[str]] = None,
|
423 |
+
height: Optional[int] = None,
|
424 |
+
width: Optional[int] = None,
|
425 |
+
num_inference_steps: int = 50,
|
426 |
+
guidance_scale: float = 7.5,
|
427 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
428 |
+
num_images_per_prompt: Optional[int] = 1,
|
429 |
+
eta: float = 0.0,
|
430 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
431 |
+
latents: Optional[torch.FloatTensor] = None,
|
432 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
433 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
434 |
+
output_type: Optional[str] = "pil",
|
435 |
+
return_dict: bool = True,
|
436 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
437 |
+
original_size: Optional[Tuple[int, int]] = None,
|
438 |
+
target_size: Optional[Tuple[int, int]] = None,
|
439 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
440 |
+
callback_steps: int = 1,
|
441 |
+
input_id_images: PipelineImageInput = None,
|
442 |
+
input_image_path: PipelineImageInput = None,
|
443 |
+
start_merge_step: int = 0,
|
444 |
+
class_tokens_mask: Optional[torch.LongTensor] = None,
|
445 |
+
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
446 |
+
### add for sdxl
|
447 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
448 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
449 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
450 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
451 |
+
pooled_prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
452 |
+
guidance_rescale: float = 7.5
|
453 |
+
):
|
454 |
+
# 0. Default height and width to unet
|
455 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
456 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
457 |
+
|
458 |
+
original_size = original_size or (height, width)
|
459 |
+
target_size = target_size or (height, width)
|
460 |
+
|
461 |
+
# 1. Check inputs. Raise error if not correct
|
462 |
+
# self.check_inputs(
|
463 |
+
# prompt,
|
464 |
+
# height,
|
465 |
+
# width,
|
466 |
+
# callback_steps,
|
467 |
+
# negative_prompt,
|
468 |
+
# prompt_embeds,
|
469 |
+
# negative_prompt_embeds,
|
470 |
+
# )
|
471 |
+
|
472 |
+
if not isinstance(input_id_images, list):
|
473 |
+
input_id_images = [input_id_images]
|
474 |
+
|
475 |
+
# 2. Define call parameters
|
476 |
+
if prompt is not None and isinstance(prompt, str):
|
477 |
+
batch_size = 1
|
478 |
+
elif prompt is not None and isinstance(prompt, list):
|
479 |
+
batch_size = len(prompt)
|
480 |
+
else:
|
481 |
+
batch_size = prompt_embeds.shape[0]
|
482 |
+
|
483 |
+
device = self._execution_device
|
484 |
+
do_classifier_free_guidance = guidance_scale >= 1.0
|
485 |
+
input_image_file = input_id_images[0]
|
486 |
+
|
487 |
+
faceid_embeds = self.get_prepare_faceid(input_image_path=input_image_path)
|
488 |
+
face_caption = self.get_prepare_llva_caption(input_image_file=input_image_file)
|
489 |
+
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
|
490 |
+
|
491 |
+
assert do_classifier_free_guidance
|
492 |
+
|
493 |
+
# 3. Encode input prompt
|
494 |
+
num_id_images = len(input_id_images)
|
495 |
+
|
496 |
+
(
|
497 |
+
prompt_text_only,
|
498 |
+
clean_input_id,
|
499 |
+
clean_input_id2, ### add for sdxl
|
500 |
+
key_parsing_mask_list_align,
|
501 |
+
facial_token_mask,
|
502 |
+
facial_token_idx,
|
503 |
+
facial_token_idx_mask,
|
504 |
+
) = self.encode_prompt_with_trigger_word(
|
505 |
+
prompt = prompt,
|
506 |
+
face_caption = face_caption,
|
507 |
+
key_parsing_mask_list=key_parsing_mask_list,
|
508 |
+
device=device,
|
509 |
+
max_num_facials = 5,
|
510 |
+
num_id_images= num_id_images,
|
511 |
+
)
|
512 |
+
|
513 |
+
# 4. Encode input prompt without the trigger word for delayed conditioning
|
514 |
+
text_embeds = self.text_encoder(clean_input_id.to(device), output_hidden_states=True).hidden_states[-2]
|
515 |
+
######################################
|
516 |
+
########## add for sdxl : add pooled_text_embeds
|
517 |
+
######################################
|
518 |
+
### (4-1)
|
519 |
+
encoder_output_2 = self.text_encoder_2(clean_input_id2.to(device), output_hidden_states=True)
|
520 |
+
pooled_text_embeds = encoder_output_2[0]
|
521 |
+
text_embeds_2 = encoder_output_2.hidden_states[-2]
|
522 |
+
|
523 |
+
### (4-2)
|
524 |
+
encoder_hidden_states = torch.concat([text_embeds, text_embeds_2], dim=-1) # concat
|
525 |
+
|
526 |
+
### (4-3)
|
527 |
+
if self.text_encoder_2 is None:
|
528 |
+
text_encoder_projection_dim = int(pooled_text_embeds.shape[-1])
|
529 |
+
else:
|
530 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
531 |
+
add_time_ids = self._get_add_time_ids(
|
532 |
+
original_size,
|
533 |
+
crops_coords_top_left,
|
534 |
+
target_size,
|
535 |
+
dtype=self.torch_dtype,
|
536 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
537 |
+
)
|
538 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) ### add_time_ids.Size([2, 6])
|
539 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
540 |
+
|
541 |
+
######################################
|
542 |
+
########## add for sdxl : add pooled_prompt_embeds
|
543 |
+
######################################
|
544 |
+
text_encoder_lora_scale = (
|
545 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
546 |
+
)
|
547 |
+
(
|
548 |
+
prompt_embeds,
|
549 |
+
negative_prompt_embeds,
|
550 |
+
pooled_prompt_embeds_text_only,
|
551 |
+
negative_pooled_prompt_embeds,
|
552 |
+
)= self.encode_prompt(
|
553 |
+
prompt=prompt,
|
554 |
+
prompt_2=prompt_2,
|
555 |
+
device=device,
|
556 |
+
num_images_per_prompt=num_images_per_prompt,
|
557 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
558 |
+
negative_prompt=negative_prompt,
|
559 |
+
negative_prompt_2=negative_prompt_2,
|
560 |
+
prompt_embeds=prompt_embeds_text_only,
|
561 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
562 |
+
pooled_prompt_embeds=pooled_prompt_embeds_text_only,
|
563 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
564 |
+
lora_scale=text_encoder_lora_scale,
|
565 |
+
)
|
566 |
+
|
567 |
+
# 5. Prepare the input ID images
|
568 |
+
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=1.0, shortcut=True)
|
569 |
+
|
570 |
+
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=1280, max_num_facials=5)
|
571 |
+
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
|
572 |
+
facial_token_mask = facial_token_mask.to(device)
|
573 |
+
facial_token_idx_mask = facial_token_idx_mask.to(device)
|
574 |
+
|
575 |
+
cross_attention_kwargs = {}
|
576 |
+
|
577 |
+
# 6. Get the update text embedding
|
578 |
+
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_prompt_embeds, \
|
579 |
+
facial_clip_images, facial_token_mask, facial_token_idx_mask)
|
580 |
+
|
581 |
+
########## text_facial embeds
|
582 |
+
prompt_embeds_facial = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
|
583 |
+
negative_prompt_embeds_facial = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
|
584 |
+
|
585 |
+
########## text_only embeds
|
586 |
+
prompt_embeds_text_only = torch.cat([prompt_embeds, prompt_tokens_faceid], dim=1)
|
587 |
+
negative_prompt_embeds_text_only = torch.cat([negative_prompt_embeds, uncond_prompt_tokens_faceid], dim=1)
|
588 |
+
|
589 |
+
# 7. Prepare timesteps
|
590 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
591 |
+
timesteps = self.scheduler.timesteps
|
592 |
+
|
593 |
+
# 8. Prepare latent variables
|
594 |
+
num_channels_latents = self.unet.in_channels
|
595 |
+
latents = self.prepare_latents(
|
596 |
+
batch_size * num_images_per_prompt,
|
597 |
+
num_channels_latents,
|
598 |
+
height,
|
599 |
+
width,
|
600 |
+
prompt_embeds.dtype,
|
601 |
+
device,
|
602 |
+
generator,
|
603 |
+
latents,
|
604 |
+
)
|
605 |
+
|
606 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
607 |
+
|
608 |
+
# 9. Denoising loop
|
609 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
610 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
611 |
+
for i, t in enumerate(timesteps):
|
612 |
+
latent_model_input = (
|
613 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
614 |
+
)
|
615 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
616 |
+
|
617 |
+
######################################
|
618 |
+
########## add for sdxl : add unet_added_cond_kwargs
|
619 |
+
######################################
|
620 |
+
if i <= start_merge_step:
|
621 |
+
current_prompt_embeds = torch.cat(
|
622 |
+
[negative_prompt_embeds_text_only, prompt_embeds_text_only], dim=0
|
623 |
+
)
|
624 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_text_only], dim=0)
|
625 |
+
else:
|
626 |
+
current_prompt_embeds = torch.cat(
|
627 |
+
[negative_prompt_embeds_facial, prompt_embeds_facial], dim=0
|
628 |
+
)
|
629 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_text_embeds], dim=0)
|
630 |
+
|
631 |
+
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
632 |
+
|
633 |
+
# predict the noise residual
|
634 |
+
noise_pred = self.unet(
|
635 |
+
latent_model_input,
|
636 |
+
t,
|
637 |
+
encoder_hidden_states=current_prompt_embeds,
|
638 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
639 |
+
added_cond_kwargs=unet_added_cond_kwargs,
|
640 |
+
# return_dict=False, ### [0]
|
641 |
+
).sample
|
642 |
+
|
643 |
+
# perform guidance
|
644 |
+
if do_classifier_free_guidance:
|
645 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
646 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
647 |
+
noise_pred_text - noise_pred_uncond
|
648 |
+
)
|
649 |
+
else:
|
650 |
+
assert 0, "Not Implemented"
|
651 |
+
|
652 |
+
# if do_classifier_free_guidance and guidance_rescale > 0.0:
|
653 |
+
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
654 |
+
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) ### TODO optimal noise and LCM
|
655 |
+
|
656 |
+
# compute the previous noisy sample x_t -> x_t-1
|
657 |
+
latents = self.scheduler.step(
|
658 |
+
noise_pred, t, latents, **extra_step_kwargs
|
659 |
+
).prev_sample
|
660 |
+
|
661 |
+
# call the callback, if provided
|
662 |
+
if i == len(timesteps) - 1 or (
|
663 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
664 |
+
):
|
665 |
+
progress_bar.update()
|
666 |
+
if callback is not None and i % callback_steps == 0:
|
667 |
+
callback(i, t, latents)
|
668 |
+
|
669 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
670 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
671 |
+
self.upcast_vae()
|
672 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
673 |
+
|
674 |
+
if not output_type == "latent":
|
675 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
676 |
+
else:
|
677 |
+
image = latents
|
678 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
679 |
+
|
680 |
+
# apply watermark if available
|
681 |
+
# if self.watermark is not None:
|
682 |
+
# image = self.watermark.apply_watermark(image)
|
683 |
+
|
684 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
685 |
+
|
686 |
+
# Offload all models
|
687 |
+
self.maybe_free_model_hooks()
|
688 |
+
|
689 |
+
if not return_dict:
|
690 |
+
return (image,)
|
691 |
+
|
692 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
693 |
+
|
694 |
+
|
695 |
+
|
696 |
+
|
697 |
+
|
698 |
+
|
699 |
+
|
700 |
+
|
701 |
+
|