JackAILab commited on
Commit
b0f8e3e
·
verified ·
1 Parent(s): 9426ac9

Delete models/LLaVA

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. models/LLaVA/0000005.jpg +0 -0
  2. models/LLaVA/LICENSE +0 -201
  3. models/LLaVA/README.md +0 -419
  4. models/LLaVA/cog.yaml +0 -37
  5. models/LLaVA/demo_llva_use.py +0 -44
  6. models/LLaVA/docs/Customize_Component.md +0 -20
  7. models/LLaVA/docs/Data.md +0 -29
  8. models/LLaVA/docs/Evaluation.md +0 -167
  9. models/LLaVA/docs/Finetune_Custom_Data.md +0 -37
  10. models/LLaVA/docs/Intel.md +0 -7
  11. models/LLaVA/docs/LLaVA_Bench.md +0 -31
  12. models/LLaVA/docs/LLaVA_from_LLaMA2.md +0 -29
  13. models/LLaVA/docs/LoRA.md +0 -46
  14. models/LLaVA/docs/MODEL_ZOO.md +0 -138
  15. models/LLaVA/docs/ScienceQA.md +0 -53
  16. models/LLaVA/docs/Windows.md +0 -27
  17. models/LLaVA/docs/macOS.md +0 -29
  18. models/LLaVA/images/demo_cli.gif +0 -3
  19. models/LLaVA/images/llava_example_cmp.png +0 -0
  20. models/LLaVA/images/llava_logo.png +0 -0
  21. models/LLaVA/images/llava_v1_5_radar.jpg +0 -0
  22. models/LLaVA/llava.egg-info/PKG-INFO +0 -457
  23. models/LLaVA/llava.egg-info/SOURCES.txt +0 -68
  24. models/LLaVA/llava.egg-info/dependency_links.txt +0 -1
  25. models/LLaVA/llava.egg-info/requires.txt +0 -27
  26. models/LLaVA/llava.egg-info/top_level.txt +0 -2
  27. models/LLaVA/llava/__init__.py +0 -1
  28. models/LLaVA/llava/__pycache__/__init__.cpython-310.pyc +0 -0
  29. models/LLaVA/llava/__pycache__/__init__.cpython-311.pyc +0 -0
  30. models/LLaVA/llava/__pycache__/__init__.cpython-38.pyc +0 -0
  31. models/LLaVA/llava/__pycache__/constants.cpython-310.pyc +0 -0
  32. models/LLaVA/llava/__pycache__/constants.cpython-38.pyc +0 -0
  33. models/LLaVA/llava/__pycache__/conversation.cpython-310.pyc +0 -0
  34. models/LLaVA/llava/__pycache__/conversation.cpython-38.pyc +0 -0
  35. models/LLaVA/llava/__pycache__/mm_utils.cpython-310.pyc +0 -0
  36. models/LLaVA/llava/__pycache__/mm_utils.cpython-38.pyc +0 -0
  37. models/LLaVA/llava/__pycache__/utils.cpython-310.pyc +0 -0
  38. models/LLaVA/llava/__pycache__/utils.cpython-38.pyc +0 -0
  39. models/LLaVA/llava/constants.py +0 -13
  40. models/LLaVA/llava/conversation.py +0 -381
  41. models/LLaVA/llava/eval/__pycache__/run_llava.cpython-310.pyc +0 -0
  42. models/LLaVA/llava/eval/__pycache__/run_llava.cpython-38.pyc +0 -0
  43. models/LLaVA/llava/eval/eval_gpt_review.py +0 -113
  44. models/LLaVA/llava/eval/eval_gpt_review_bench.py +0 -121
  45. models/LLaVA/llava/eval/eval_gpt_review_visual.py +0 -118
  46. models/LLaVA/llava/eval/eval_pope.py +0 -81
  47. models/LLaVA/llava/eval/eval_science_qa.py +0 -114
  48. models/LLaVA/llava/eval/eval_science_qa_gpt4.py +0 -104
  49. models/LLaVA/llava/eval/eval_science_qa_gpt4_requery.py +0 -149
  50. models/LLaVA/llava/eval/eval_textvqa.py +0 -65
models/LLaVA/0000005.jpg DELETED
Binary file (86.2 kB)
 
models/LLaVA/LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright [yyyy] [name of copyright owner]
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/README.md DELETED
@@ -1,419 +0,0 @@
1
- # 🌋 LLaVA: Large Language and Vision Assistant
2
-
3
- *Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.*
4
-
5
- [[Project Page](https://llava-vl.github.io/)] [[Demo](https://llava.hliu.cc/)] [[Data](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)] [[Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)]
6
-
7
- 🤝Community Contributions: [[llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436)] [[Colab](https://github.com/camenduru/LLaVA-colab)] [[🤗Space](https://huggingface.co/spaces/badayvedat/LLaVA)] [[Replicate](https://replicate.com/yorickvp/llava-13b)] [[AutoGen](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)] [[BakLLaVA](https://github.com/SkunkworksAI/BakLLaVA)]
8
-
9
- **Improved Baselines with Visual Instruction Tuning** [[Paper](https://arxiv.org/abs/2310.03744)] <br>
10
- [Haotian Liu](https://hliu.cc), [Chunyuan Li](https://chunyuan.li/), [Yuheng Li](https://yuheng-li.github.io/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/)
11
-
12
- **Visual Instruction Tuning** (NeurIPS 2023, **Oral**) [[Paper](https://arxiv.org/abs/2304.08485)]<br>
13
- [Haotian Liu*](https://hliu.cc), [Chunyuan Li*](https://chunyuan.li/), [Qingyang Wu](https://scholar.google.ca/citations?user=HDiw-TsAAAAJ&hl=en/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) (*Equal Contribution)
14
-
15
- <!--p align="center">
16
- <a href="https://llava.hliu.cc/"><img src="images/llava_logo.png" width="50%"></a> <br>
17
- Generated by <a href="https://gligen.github.io/">GLIGEN</a> via "a cute lava llama with glasses" and box prompt
18
- </p-->
19
-
20
-
21
- ## Release
22
- - [11/10] [LLaVA-Plus](https://llava-vl.github.io/llava-plus/) is released: Learning to Use Tools for Creating Multimodal Agents, with LLaVA-Plus (LLaVA that Plug and Learn to Use Skills). [[Project Page](https://llava-vl.github.io/llava-plus/)] [[Demo](https://llavaplus.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase)] [[Paper](https://arxiv.org/abs/2311.05437)]
23
- - [11/2] [LLaVA-Interactive](https://llava-vl.github.io/llava-interactive/) is released: Experience the future of human-AI multimodal interaction with an all-in-one demo for Image Chat, Segmentation, Generation and Editing. [[Project Page](https://llava-vl.github.io/llava-interactive/)] [[Demo](https://llavainteractive.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Interactive-Demo)] [[Paper](https://arxiv.org/abs/2311.00571)]
24
- - [10/26] 🔥 LLaVA-1.5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement ([ckpts](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md#llava-v15), [script](https://github.com/haotian-liu/LLaVA#train)). We also provide a [doc](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md) on how to finetune LLaVA-1.5 on your own dataset with LoRA.
25
- - [10/12] Check out the Korean LLaVA (Ko-LLaVA), created by ETRI, who has generously supported our research! [[🤗 Demo](https://huggingface.co/spaces/etri-vilab/Ko-LLaVA)]
26
- - [10/5] 🔥 LLaVA-1.5 is out! Achieving SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods like Qwen-VL-Chat that use billion-scale data. Check out the [technical report](https://arxiv.org/abs/2310.03744), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)!
27
- - [9/26] LLaVA is improved with reinforcement learning from human feedback (RLHF) to improve fact grounding and reduce hallucination. Check out the new SFT and RLHF checkpoints at project [[LLavA-RLHF]](https://llava-rlhf.github.io/)
28
- - [9/22] [LLaVA](https://arxiv.org/abs/2304.08485) is accepted by NeurIPS 2023 as **oral presentation**, and [LLaVA-Med](https://arxiv.org/abs/2306.00890) is accepted by NeurIPS 2023 Datasets and Benchmarks Track as **spotlight presentation**.
29
-
30
- <details>
31
- <summary>More</summary>
32
-
33
- - [11/6] Support **Intel** dGPU and CPU platforms. [More details here.](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel)
34
- - [10/12] LLaVA is now supported in [llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436) with 4-bit / 5-bit quantization support!
35
- - [10/11] The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)!
36
- - [10/10] [Roboflow Deep Dive](https://blog.roboflow.com/first-impressions-with-llava-1-5/): First Impressions with LLaVA-1.5.
37
- - [9/20] We summarize our empirical study of training 33B and 65B LLaVA models in a [note](https://arxiv.org/abs/2309.09958). Further, if you are interested in the comprehensive review, evolution and trend of multimodal foundation models, please check out our recent survey paper [``Multimodal Foundation Models: From Specialists to General-Purpose Assistants''.](https://arxiv.org/abs/2309.10020)
38
- <p align="center">
39
- <img src="https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings/blob/main/images/mfm_evolution.jpeg?raw=true" width=50%/>
40
- </p>
41
-
42
- - [7/19] 🔥 We release a major upgrade, including support for LLaMA-2, LoRA training, 4-/8-bit inference, higher resolution (336x336), and a lot more. We release [LLaVA Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) for benchmarking open-ended visual chat with results from Bard and Bing-Chat. We also support and verify training with RTX 3090 and RTX A6000. Check out [LLaVA-from-LLaMA-2](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_from_LLaMA2.md), and our [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)!
43
- - [6/26] [CVPR 2023 Tutorial](https://vlp-tutorial.github.io/) on **Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4**! Please check out [[Slides](https://datarelease.blob.core.windows.net/tutorial/vision_foundation_models_2023/slides/Chunyuan_cvpr2023_tutorial_lmm.pdf)] [[Notes](https://arxiv.org/abs/2306.14895)] [[YouTube](https://youtu.be/mkI7EPD1vp8)] [[Bilibli](https://www.bilibili.com/video/BV1Ng4y1T7v3/)].
44
- - [6/11] We released the preview for the most requested feature: DeepSpeed and LoRA support! Please see documentations [here](./docs/LoRA.md).
45
- - [6/1] We released **LLaVA-Med: Large Language and Vision Assistant for Biomedicine**, a step towards building biomedical domain large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2306.00890) and [page](https://github.com/microsoft/LLaVA-Med).
46
- - [5/6] We are releasing [LLaVA-Lighting-MPT-7B-preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview), based on MPT-7B-Chat! See [here](#LLaVA-MPT-7b) for more details.
47
- - [5/2] 🔥 We are releasing LLaVA-Lighting! Train a lite, multimodal GPT-4 with just $40 in 3 hours! See [here](#train-llava-lightning) for more details.
48
- - [4/27] Thanks to the community effort, LLaVA-13B with 4-bit quantization allows you to run on a GPU with as few as 12GB VRAM! Try it out [here](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/llava).
49
- - [4/17] 🔥 We released **LLaVA: Large Language and Vision Assistant**. We propose visual instruction tuning, towards building large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2304.08485) and [demo](https://llava.hliu.cc/).
50
-
51
- </details>
52
-
53
- <!-- <a href="https://llava.hliu.cc/"><img src="assets/demo.gif" width="70%"></a> -->
54
-
55
- [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
56
- **Usage and License Notices**: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the [OpenAI Terms of Use](https://openai.com/policies/terms-of-use) for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. [Llama community license](https://ai.meta.com/llama/license/) for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.
57
-
58
-
59
- ## Contents
60
- - [Install](#install)
61
- - [LLaVA Weights](#llava-weights)
62
- - [Demo](#Demo)
63
- - [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)
64
- - [Dataset](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)
65
- - [Train](#train)
66
- - [Evaluation](#evaluation)
67
-
68
- ## Install
69
-
70
- If you are not using Linux, do *NOT* proceed, see instructions for [macOS](https://github.com/haotian-liu/LLaVA/blob/main/docs/macOS.md) and [Windows](https://github.com/haotian-liu/LLaVA/blob/main/docs/Windows.md).
71
-
72
- 1. Clone this repository and navigate to LLaVA folder
73
- ```bash
74
- git clone https://github.com/haotian-liu/LLaVA.git
75
- cd LLaVA
76
- ```
77
-
78
- 2. Install Package
79
- ```Shell
80
- conda create -n llava python=3.10 -y
81
- conda activate llava
82
- pip install --upgrade pip # enable PEP 660 support
83
- pip install -e .
84
- ```
85
-
86
- 3. Install additional packages for training cases
87
- ```
88
- pip install -e ".[train]"
89
- pip install flash-attn --no-build-isolation
90
- ```
91
-
92
- ### Upgrade to latest code base
93
-
94
- ```Shell
95
- git pull
96
- pip install -e .
97
- ```
98
-
99
- ### Quick Start With HuggingFace
100
-
101
- <details>
102
- <summary>Example Code</summary>
103
-
104
- ```Python
105
- from llava.model.builder import load_pretrained_model
106
- from llava.mm_utils import get_model_name_from_path
107
- from llava.eval.run_llava import eval_model
108
-
109
- model_path = "liuhaotian/llava-v1.5-7b"
110
-
111
- tokenizer, model, image_processor, context_len = load_pretrained_model(
112
- model_path=model_path,
113
- model_base=None,
114
- model_name=get_model_name_from_path(model_path)
115
- )
116
- ```
117
-
118
- Check out the details wth the `load_pretrained_model` function in `llava/model/builder.py`.
119
-
120
- You can also use the `eval_model` function in `llava/eval/run_llava.py` to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository.
121
-
122
- ``` python
123
- model_path = "liuhaotian/llava-v1.5-7b"
124
- prompt = "What are the things I should be cautious about when I visit here?"
125
- image_file = "https://llava-vl.github.io/static/images/view.jpg"
126
-
127
- args = type('Args', (), {
128
- "model_path": model_path,
129
- "model_base": None,
130
- "model_name": get_model_name_from_path(model_path),
131
- "query": prompt,
132
- "conv_mode": None,
133
- "image_file": image_file,
134
- "sep": ",",
135
- "temperature": 0,
136
- "top_p": None,
137
- "num_beams": 1,
138
- "max_new_tokens": 512
139
- })()
140
-
141
- eval_model(args)
142
- ```
143
- </details>
144
-
145
- ## LLaVA Weights
146
- Please check out our [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) for all public LLaVA checkpoints, and the instructions of how to use the weights.
147
-
148
- ## Demo
149
-
150
- To run our demo, you need to prepare LLaVA checkpoints locally. Please follow the instructions [here](#llava-weights) to download the checkpoints.
151
-
152
- ### Gradio Web UI
153
-
154
- To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*.
155
-
156
- ```mermaid
157
- flowchart BT
158
- %% Declare Nodes
159
- gws("Gradio (UI Server)")
160
- c("Controller (API Server):<br/>PORT: 10000")
161
- mw7b("Model Worker:<br/>llava-v1.5-7b<br/>PORT: 40000")
162
- mw13b("Model Worker:<br/>llava-v1.5-13b<br/>PORT: 40001")
163
-
164
- %% Declare Styles
165
- classDef data fill:#3af,stroke:#48a,stroke-width:2px,color:#444
166
- classDef success fill:#8f8,stroke:#0a0,stroke-width:2px,color:#444
167
- classDef failure fill:#f88,stroke:#f00,stroke-width:2px,color:#444
168
-
169
- %% Assign Styles
170
- class id,od data;
171
- class cimg,cs_s,scsim_s success;
172
- class ncimg,cs_f,scsim_f failure;
173
-
174
- subgraph Demo Connections
175
- direction BT
176
- c<-->gws
177
-
178
- mw7b<-->c
179
- mw13b<-->c
180
- end
181
- ```
182
-
183
- #### Launch a controller
184
- ```Shell
185
- python -m llava.serve.controller --host 0.0.0.0 --port 10000
186
- ```
187
-
188
- #### Launch a gradio web server.
189
- ```Shell
190
- python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
191
- ```
192
- You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
193
-
194
- #### Launch a model worker
195
-
196
- This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`.
197
-
198
- ```Shell
199
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
200
- ```
201
- Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
202
-
203
- You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
204
- ```Shell
205
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
206
- ```
207
-
208
- If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the `--device` flag: `--device mps`.
209
-
210
- #### Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)
211
-
212
- If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with `CUDA_VISIBLE_DEVICES`. Below is an example of running with the first two GPUs.
213
-
214
- ```Shell
215
- CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
216
- ```
217
-
218
- #### Launch a model worker (4-bit, 8-bit inference, quantized)
219
-
220
- You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append `--load-4bit` or `--load-8bit` to the **model worker** command that you are executing. Below is an example of running with 4-bit quantization.
221
-
222
- ```Shell
223
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit
224
- ```
225
-
226
- #### Launch a model worker (LoRA weights, unmerged)
227
-
228
- You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have `lora-merge` in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B).
229
-
230
- To load unmerged LoRA weights, you simply need to pass an additional argument `--model-base`, which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md).
231
-
232
- ```Shell
233
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3
234
- ```
235
-
236
- ### CLI Inference
237
-
238
- Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU.
239
-
240
- ```Shell
241
- python -m llava.serve.cli \
242
- --model-path liuhaotian/llava-v1.5-7b \
243
- --image-file "https://llava-vl.github.io/static/images/view.jpg" \
244
- --load-4bit
245
- ```
246
-
247
- <img src="images/demo_cli.gif" width="70%">
248
-
249
- ## Train
250
-
251
- *Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of [this](https://github.com/haotian-liu/LLaVA/tree/v1.0.1) version for now. We'll add them in a separate doc later.*
252
-
253
- LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a *frozen pretrained* vision encoder to a *frozen LLM*; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions.
254
-
255
- LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`.
256
-
257
- ### Hyperparameters
258
- We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.
259
-
260
- 1. Pretraining
261
-
262
- | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
263
- | --- | ---: | ---: | ---: | ---: | ---: |
264
- | LLaVA-v1.5-13B | 256 | 1e-3 | 1 | 2048 | 0 |
265
-
266
- 2. Finetuning
267
-
268
- | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
269
- | --- | ---: | ---: | ---: | ---: | ---: |
270
- | LLaVA-v1.5-13B | 128 | 2e-5 | 1 | 2048 | 0 |
271
-
272
- ### Download Vicuna checkpoints (automatically)
273
-
274
- Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.
275
-
276
- ### Pretrain (feature alignment)
277
-
278
- Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
279
-
280
- Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.
281
-
282
- Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/pretrain.sh).
283
-
284
- - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector.
285
- - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px.
286
-
287
- <details>
288
- <summary>Pretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)</summary>
289
-
290
- We provide training script with DeepSpeed [here](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain_xformers.sh).
291
- Tips:
292
- - If you are using V100 which is not supported by FlashAttention, you can use the [memory-efficient attention](https://arxiv.org/abs/2112.05682) implemented in [xFormers](https://github.com/facebookresearch/xformers). Install xformers and replace `llava/train/train_mem.py` above with [llava/train/train_xformers.py](llava/train/train_xformers.py).
293
- </details>
294
-
295
- ### Visual Instruction Tuning
296
-
297
- 1. Prepare data
298
-
299
- Please download the annotation of the final mixture our instruction tuning data [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), and download the images from constituting datasets:
300
-
301
- - COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
302
- - GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
303
- - OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`**
304
- - TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
305
- - VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
306
-
307
- After downloading all of them, organize the data as follows in `./playground/data`,
308
-
309
- ```
310
- ├── coco
311
- │ └── train2017
312
- ├── gqa
313
- │ └── images
314
- ├── ocr_vqa
315
- │ └── images
316
- ├── textvqa
317
- │ └── train_images
318
- └── vg
319
- ├── VG_100K
320
- └── VG_100K_2
321
- ```
322
-
323
- 2. Start training!
324
-
325
- You may download our pretrained projectors in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.
326
-
327
- Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).
328
-
329
- Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh).
330
-
331
- If you are do not have enough GPU memory:
332
-
333
- - Use LoRA: [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_lora.sh). We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure `per_device_train_batch_size*gradient_accumulation_steps` is the same as the provided script for best reproducibility.
334
- - Replace `zero3.json` with `zero3_offload.json` which offloads some parameters to CPU RAM. This slows down the training speed.
335
-
336
- If you are interested in finetuning LLaVA model to your own task/data, please check out [`Finetune_Custom_Data.md`](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md)。
337
-
338
- New options to note:
339
-
340
- - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector.
341
- - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px.
342
- - `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.
343
- - `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.
344
-
345
- ## Evaluation
346
-
347
- In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.
348
-
349
- See [Evaluation.md](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md).
350
-
351
- ### GPT-assisted Evaluation
352
-
353
- Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.
354
-
355
- 1. Generate LLaVA responses
356
-
357
- ```Shell
358
- python model_vqa.py \
359
- --model-path ./checkpoints/LLaVA-13B-v0 \
360
- --question-file \
361
- playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
362
- --image-folder \
363
- /path/to/coco2014_val \
364
- --answers-file \
365
- /path/to/answer-file-our.jsonl
366
- ```
367
-
368
- 2. Evaluate the generated responses. In our case, [`answer-file-ref.jsonl`](./playground/data/coco2014_val_qa_eval/qa90_gpt4_answer.jsonl) is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.
369
-
370
- ```Shell
371
- OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \
372
- --question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
373
- --context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \
374
- --answer-list \
375
- /path/to/answer-file-ref.jsonl \
376
- /path/to/answer-file-our.jsonl \
377
- --rule llava/eval/table/rule.json \
378
- --output /path/to/review.json
379
- ```
380
-
381
- 3. Summarize the evaluation results
382
-
383
- ```Shell
384
- python summarize_gpt_review.py
385
- ```
386
-
387
- ## Citation
388
-
389
- If you find LLaVA useful for your research and applications, please cite using this BibTeX:
390
- ```bibtex
391
-
392
- @misc{liu2023improvedllava,
393
- title={Improved Baselines with Visual Instruction Tuning},
394
- author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
395
- publisher={arXiv:2310.03744},
396
- year={2023},
397
- }
398
-
399
- @misc{liu2023llava,
400
- title={Visual Instruction Tuning},
401
- author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
402
- publisher={arXiv:2304.08485},
403
- year={2023},
404
- }
405
- ```
406
-
407
- ## Acknowledgement
408
-
409
- - [Vicuna](https://github.com/lm-sys/FastChat): the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!
410
-
411
- ## Related Projects
412
-
413
- - [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
414
- - [LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day](https://github.com/microsoft/LLaVA-Med)
415
- - [Otter: In-Context Multi-Modal Instruction Tuning](https://github.com/Luodian/Otter)
416
-
417
- For future project ideas, please check out:
418
- - [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
419
- - [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) to detect, segment, and generate anything by marrying [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) and [Segment-Anything](https://github.com/facebookresearch/segment-anything).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/cog.yaml DELETED
@@ -1,37 +0,0 @@
1
- # Configuration for Cog ⚙️
2
- # Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
3
-
4
- build:
5
- gpu: true
6
-
7
- python_version: "3.11"
8
-
9
- python_packages:
10
- - "torch==2.0.1"
11
- - "accelerate==0.21.0"
12
- - "bitsandbytes==0.41.0"
13
- - "deepspeed==0.9.5"
14
- - "einops-exts==0.0.4"
15
- - "einops==0.6.1"
16
- - "gradio==3.35.2"
17
- - "gradio_client==0.2.9"
18
- - "httpx==0.24.0"
19
- - "markdown2==2.4.10"
20
- - "numpy==1.26.0"
21
- - "peft==0.4.0"
22
- - "scikit-learn==1.2.2"
23
- - "sentencepiece==0.1.99"
24
- - "shortuuid==1.0.11"
25
- - "timm==0.6.13"
26
- - "tokenizers==0.13.3"
27
- - "torch==2.0.1"
28
- - "torchvision==0.15.2"
29
- - "transformers==4.31.0"
30
- - "wandb==0.15.12"
31
- - "wavedrom==2.0.3.post3"
32
- - "Pygments==2.16.1"
33
- run:
34
- - curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.0.3/pget" && chmod +x /usr/local/bin/pget
35
-
36
- # predict.py defines how predictions are run on your model
37
- predict: "predict.py:Predictor"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/demo_llva_use.py DELETED
@@ -1,44 +0,0 @@
1
- import sys
2
- sys.path.append("./Llava1.5/LLaVA")
3
- # Detailed model can be viewed at https://github.com/haotian-liu/LLaVA
4
- from llava.model.builder import load_pretrained_model
5
- from llava.mm_utils import get_model_name_from_path
6
- from llava.eval.run_llava import eval_model
7
-
8
- model_path = "./pretrained_model/llava-v1.5-7b" # "liuhaotian/llava-v1.5-7b"
9
- prompt = "Please describe the people in the image, including their gender, age, clothing, facial expressions, and any other distinguishing features."
10
- image_file = "./demo.png"
11
-
12
- tokenizer, model, image_processor, context_len = load_pretrained_model(
13
- model_path=model_path,
14
- model_base=None,
15
- model_name=get_model_name_from_path(model_path),
16
- # load_4bit=True
17
- ) # device="cuda"
18
-
19
- args = type('Args', (), {
20
- "model_path": model_path,
21
- "model_base": None,
22
- "model_name": get_model_name_from_path(model_path),
23
- "query": prompt,
24
- "conv_mode": None,
25
- "image_file": image_file,
26
- "sep": ",",
27
- "temperature": 0,
28
- "top_p": None,
29
- "num_beams": 1,
30
- "max_new_tokens": 512
31
- })()
32
-
33
- outputs = eval_model(args, tokenizer, model, image_processor)
34
- print(f"The caption is: {outputs}")
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/Customize_Component.md DELETED
@@ -1,20 +0,0 @@
1
- # Customize Components in LLaVA
2
-
3
- This is an initial guide on how to replace the LLMs, visual encoders, etc. with your choice of components.
4
-
5
- ## LLM
6
-
7
- It is quite simple to swap out LLaMA to any other LLMs. You can refer to our implementation of [`llava_llama.py`](https://raw.githubusercontent.com/haotian-liu/LLaVA/main/llava/model/language_model/llava_llama.py) for an example of how to replace the LLM.
8
-
9
- Although it may seem that it still needs ~100 lines of code, most of them are copied from the original `llama.py` from HF. The only part that is different is to insert some lines for processing the multimodal inputs.
10
-
11
- In `forward` function, you can see that we call `self.prepare_inputs_labels_for_multimodal` to process the multimodal inputs. This function is defined in `LlavaMetaForCausalLM` and you just need to insert it into the `forward` function of your LLM.
12
-
13
- In `prepare_inputs_for_generation` function, you can see that we add `images` to the `model_inputs`. This is because we need to pass the images to the LLM during generation.
14
-
15
- These are basically all the changes you need to make to replace the LLM.
16
-
17
- ## Visual Encoder
18
-
19
- You can check out [`clip_encoder.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/clip_encoder.py) on how we implement the CLIP visual encoder.
20
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/Data.md DELETED
@@ -1,29 +0,0 @@
1
- ## Data
2
-
3
- | Data file name | Size |
4
- | --- | ---: |
5
- | [llava_instruct_150k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_150k.json) | 229 MB |
6
- | [llava_instruct_80k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_80k.json) | 229 MB |
7
- | [conversation_58k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/conversation_58k.json) | 126 MB |
8
- | [detail_23k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/detail_23k.json) | 20.5 MB |
9
- | [complex_reasoning_77k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/complex_reasoning_77k.json) | 79.6 MB |
10
-
11
- ### Pretraining Dataset
12
- The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see [here](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K) for a detailed description of the dataset structure and how to download the images.
13
-
14
- If you already have CC-3M dataset on your disk, the image names follow this format: `GCC_train_000000000.jpg`. You may edit the `image` field correspondingly if necessary.
15
-
16
- | Data | Chat File | Meta Data | Size |
17
- | --- | --- | --- | ---: |
18
- | CC-3M Concept-balanced 595K | [chat.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) | [metadata.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/metadata.json) | 211 MB
19
- | LAION/CC/SBU BLIP-Caption Concept-balanced 558K | [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/blip_laion_cc_sbu_558k.json) | [metadata.json](#) | 181 MB
20
-
21
- **Important notice**: Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload [`images.zip`](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/images.zip) for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.
22
-
23
- ### GPT-4 Prompts
24
-
25
- We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the [`prompts`](https://github.com/haotian-liu/LLaVA/tree/main/playground/data/prompts) folder for three kinds of questions: conversation, detail description, and complex reasoning.
26
-
27
- They are organized in a format of `system_message.txt` for system message, pairs of `abc_caps.txt` for few-shot sample user input, and `abc_conv.txt` for few-shot sample reference output.
28
-
29
- Note that you may find them in different format. For example, `conversation` is in `jsonl`, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: `jsonl`, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/Evaluation.md DELETED
@@ -1,167 +0,0 @@
1
- # Evaluation
2
-
3
- In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.
4
-
5
- Currently, we mostly utilize the official toolkit or server for the evaluation.
6
-
7
- ## Evaluate on Custom Datasets
8
-
9
- You can evaluate LLaVA on your custom datasets by converting your dataset to LLaVA's jsonl format, and evaluate using [`model_vqa.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/model_vqa.py).
10
-
11
- Below we provide a general guideline for evaluating datasets with some common formats.
12
-
13
- 1. Short-answer (e.g. VQAv2, MME).
14
-
15
- ```
16
- <question>
17
- Answer the question using a single word or phrase.
18
- ```
19
-
20
- 2. Option-only for multiple-choice (e.g. MMBench, SEED-Bench).
21
-
22
- ```
23
- <question>
24
- A. <option_1>
25
- B. <option_2>
26
- C. <option_3>
27
- D. <option_4>
28
- Answer with the option's letter from the given choices directly.
29
- ```
30
-
31
- 3. Natural QA (e.g. LLaVA-Bench, MM-Vet).
32
-
33
- No postprocessing is needed.
34
-
35
- ## Scripts
36
-
37
- Before preparing task-specific data, **you MUST first download [eval.zip](https://drive.google.com/file/d/1atZSBBrAX54yYpxtVVW33zFvcnaHeFPy/view?usp=sharing)**. It contains custom annotations, scripts, and the prediction files with LLaVA v1.5. Extract to `./playground/data/eval`. This also provides a general structure for all datasets.
38
-
39
- ### VQAv2
40
-
41
- 1. Download [`test2015`](http://images.cocodataset.org/zips/test2015.zip) and put it under `./playground/data/eval/vqav2`.
42
- 2. Multi-GPU inference.
43
- ```Shell
44
- CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/vqav2.sh
45
- ```
46
- 3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/830/my-submission): `./playground/data/eval/vqav2/answers_upload`.
47
-
48
- ### GQA
49
-
50
- 1. Download the [data](https://cs.stanford.edu/people/dorarad/gqa/download.html) and [evaluation scripts](https://cs.stanford.edu/people/dorarad/gqa/evaluate.html) following the official instructions and put under `./playground/data/eval/gqa/data`. You may need to modify `eval.py` as [this](https://gist.github.com/haotian-liu/db6eddc2a984b4cbcc8a7f26fd523187) due to the missing assets in the GQA v1.2 release.
51
- 2. Multi-GPU inference.
52
- ```Shell
53
- CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/gqa.sh
54
- ```
55
-
56
- ### VisWiz
57
-
58
- 1. Download [`test.json`](https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip) and extract [`test.zip`](https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip) to `test`. Put them under `./playground/data/eval/vizwiz`.
59
- 2. Single-GPU inference.
60
- ```Shell
61
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/vizwiz.sh
62
- ```
63
- 3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/1911/my-submission): `./playground/data/eval/vizwiz/answers_upload`.
64
-
65
- ### ScienceQA
66
-
67
- 1. Under `./playground/data/eval/scienceqa`, download `images`, `pid_splits.json`, `problems.json` from the `data/scienceqa` folder of the ScienceQA [repo](https://github.com/lupantech/ScienceQA).
68
- 2. Single-GPU inference and evaluate.
69
- ```Shell
70
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/sqa.sh
71
- ```
72
-
73
- ### TextVQA
74
-
75
- 1. Download [`TextVQA_0.5.1_val.json`](https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json) and [images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) and extract to `./playground/data/eval/textvqa`.
76
- 2. Single-GPU inference and evaluate.
77
- ```Shell
78
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/textvqa.sh
79
- ```
80
-
81
- ### POPE
82
-
83
- 1. Download `coco` from [POPE](https://github.com/AoiDragon/POPE/tree/e3e39262c85a6a83f26cf5094022a782cb0df58d/output/coco) and put under `./playground/data/eval/pope`.
84
- 2. Single-GPU inference and evaluate.
85
- ```Shell
86
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/pope.sh
87
- ```
88
-
89
- ### MME
90
-
91
- 1. Download the data following the official instructions [here](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation).
92
- 2. Downloaded images to `MME_Benchmark_release_version`.
93
- 3. put the official `eval_tool` and `MME_Benchmark_release_version` under `./playground/data/eval/MME`.
94
- 4. Single-GPU inference and evaluate.
95
- ```Shell
96
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mme.sh
97
- ```
98
-
99
- ### MMBench
100
-
101
- 1. Download [`mmbench_dev_20230712.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_20230712.tsv) and put under `./playground/data/eval/mmbench`.
102
- 2. Single-GPU inference.
103
- ```Shell
104
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmbench.sh
105
- ```
106
- 3. Submit the results to the [evaluation server](https://opencompass.org.cn/leaderboard-multimodal): `./playground/data/eval/mmbench/answers_upload/mmbench_dev_20230712`.
107
-
108
- ### MMBench-CN
109
-
110
- 1. Download [`mmbench_dev_cn_20231003.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_cn_20231003.tsv) and put under `./playground/data/eval/mmbench`.
111
- 2. Single-GPU inference.
112
- ```Shell
113
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmbench_cn.sh
114
- ```
115
- 3. Submit the results to the evaluation server: `./playground/data/eval/mmbench/answers_upload/mmbench_dev_cn_20231003`.
116
-
117
-
118
- ### SEED-Bench
119
-
120
- 1. Following the official [instructions](https://github.com/AILab-CVC/SEED-Bench/blob/main/DATASET.md) to download the images and the videos. Put images under `./playground/data/eval/seed_bench/SEED-Bench-image`.
121
- 2. Extract the video frame in the middle from the downloaded videos, and put them under `./playground/data/eval/seed_bench/SEED-Bench-video-image`. We provide our script `extract_video_frames.py` modified from the official one.
122
- 3. Multiple-GPU inference and evaluate.
123
- ```Shell
124
- CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/seed.sh
125
- ```
126
- 4. Optionally, submit the results to the leaderboard: `./playground/data/eval/seed_bench/answers_upload` using the official jupyter notebook.
127
-
128
- ### LLaVA-Bench-in-the-Wild
129
-
130
- 1. Extract contents of [`llava-bench-in-the-wild`](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to `./playground/data/eval/llava-bench-in-the-wild`.
131
- 2. Single-GPU inference and evaluate.
132
- ```Shell
133
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/llavabench.sh
134
- ```
135
-
136
- ### MM-Vet
137
-
138
- 1. Extract [`mm-vet.zip`](https://github.com/yuweihao/MM-Vet/releases/download/v1/mm-vet.zip) to `./playground/data/eval/mmvet`.
139
- 2. Single-GPU inference.
140
- ```Shell
141
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmvet.sh
142
- ```
143
- 3. Evaluate the predictions in `./playground/data/eval/mmvet/results` using the official jupyter notebook.
144
-
145
- ## More Benchmarks
146
-
147
- Below are awesome benchmarks for multimodal understanding from the research community, that are not initially included in the LLaVA-1.5 release.
148
-
149
- ### Q-Bench
150
-
151
- 1. Download [`llvisionqa_dev.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/llvisionqa_dev.json) (for `dev`-subset) and [`llvisionqa_test.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/llvisionqa_test.json) (for `test`-subset). Put them under `./playground/data/eval/qbench`.
152
- 2. Download and extract [images](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/images_llvisionqa.tar) and put all the images directly under `./playground/data/eval/qbench/images_llviqionqa`.
153
- 3. Single-GPU inference (change `dev` to `test` for evaluation on test set).
154
- ```Shell
155
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/qbench.sh dev
156
- ```
157
- 4. Submit the results by instruction [here](https://github.com/VQAssessment/Q-Bench#option-1-submit-results): `./playground/data/eval/qbench/llvisionqa_dev_answers.jsonl`.
158
-
159
- ### Chinese-Q-Bench
160
-
161
- 1. Download [`质衡-问答-验证集.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/%E8%B4%A8%E8%A1%A1-%E9%97%AE%E7%AD%94-%E9%AA%8C%E8%AF%81%E9%9B%86.json) (for `dev`-subset) and [`质衡-问答-测试集.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/%E8%B4%A8%E8%A1%A1-%E9%97%AE%E7%AD%94-%E6%B5%8B%E8%AF%95%E9%9B%86.json) (for `test`-subset). Put them under `./playground/data/eval/qbench`.
162
- 2. Download and extract [images](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/images_llvisionqa.tar) and put all the images directly under `./playground/data/eval/qbench/images_llviqionqa`.
163
- 3. Single-GPU inference (change `dev` to `test` for evaluation on test set).
164
- ```Shell
165
- CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/qbench_zh.sh dev
166
- ```
167
- 4. Submit the results by instruction [here](https://github.com/VQAssessment/Q-Bench#option-1-submit-results): `./playground/data/eval/qbench/llvisionqa_zh_dev_answers.jsonl`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/Finetune_Custom_Data.md DELETED
@@ -1,37 +0,0 @@
1
- # Finetune LLaVA on Custom Datasets
2
-
3
- ## Dataset Format
4
-
5
- Convert your data to a JSON file of a List of all samples. Sample metadata should contain `id` (a unique identifier), `image` (the path to the image), and `conversations` (the conversation data between human and AI).
6
-
7
- A sample JSON for finetuning LLaVA for generating tag-style captions for Stable Diffusion:
8
-
9
- ```json
10
- [
11
- {
12
- "id": "997bb945-628d-4724-b370-b84de974a19f",
13
- "image": "part-000001/997bb945-628d-4724-b370-b84de974a19f.jpg",
14
- "conversations": [
15
- {
16
- "from": "human",
17
- "value": "<image>\nWrite a prompt for Stable Diffusion to generate this image."
18
- },
19
- {
20
- "from": "gpt",
21
- "value": "a beautiful painting of chernobyl by nekro, pascal blanche, john harris, greg rutkowski, sin jong hun, moebius, simon stalenhag. in style of cg art. ray tracing. cel shading. hyper detailed. realistic. ue 5. maya. octane render. "
22
- },
23
- ]
24
- },
25
- ...
26
- ]
27
- ```
28
-
29
- ## Command
30
-
31
- If you have a limited task-specific data, we recommend finetuning from LLaVA checkpoints with LoRA following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task_lora.sh).
32
-
33
- If the amount of the task-specific data is sufficient, you can also finetune from LLaVA checkpoints with full-model finetuning following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task.sh).
34
-
35
- You may need to adjust the hyperparameters to fit each specific dataset and your hardware constraint.
36
-
37
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/Intel.md DELETED
@@ -1,7 +0,0 @@
1
- # Intel Platforms
2
-
3
- * Support [Intel GPU Max Series](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html)
4
- * Support [Intel CPU Sapphire Rapides](https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html)
5
- * Based on [Intel Extension for Pytorch](https://intel.github.io/intel-extension-for-pytorch)
6
-
7
- More details in [**intel branch**](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel)
 
 
 
 
 
 
 
 
models/LLaVA/docs/LLaVA_Bench.md DELETED
@@ -1,31 +0,0 @@
1
- # LLaVA-Bench [[Download](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild)]
2
-
3
- **-Introduction-** Large commercial multimodal chatbots have been released in this week, including
4
- - [Multimodal Bing-Chat by Microsoft](https://blogs.bing.com/search/july-2023/Bing-Chat-Enterprise-announced,-multimodal-Visual-Search-rolling-out-to-Bing-Chat) (July 18, 2023)
5
- - [Multimodal Bard by Google](https://bard.google.com/).
6
-
7
- These chatbots are presumably supported by proprietary large multimodal models (LMM). Compared with the open-source LMM such as LLaVA, proprietary LMM represent the scaling success upperbound of the current SoTA techniques. They share the goal of developing multimodal chatbots that follow human intents to complete various daily-life visual tasks in the wild. While it remains less explored how to evaluate multimodal chat ability, it provides useful feedback to study open-source LMMs against the commercial multimodal chatbots. In addition to the *LLaVA-Bench (COCO)* dataset we used to develop the early versions of LLaVA, we are releasing [*LLaVA-Bench (In-the-Wild)*](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to the community for the public use.
8
-
9
- ## LLaVA-Bench (In-the-Wild *[Ongoing work]*)
10
-
11
- To evaluate the model's capability in more challenging tasks and generalizability to novel domains, we collect a diverse set of 24 images with 60 questions in total, including indoor and outdoor scenes, memes, paintings, sketches, etc, and associate each image with a highly-detailed and manually-curated description and a proper selection of questions. Such design also assesses the model's robustness to different prompts. In this release, we also categorize questions into three categories: conversation (simple QA), detailed description, and complex reasoning. We continue to expand and improve the diversity of the LLaVA-Bench (In-the-Wild). We manually query Bing-Chat and Bard to get the responses.
12
-
13
- ### Results
14
-
15
- The score is measured by comparing against a reference answer generated by text-only GPT-4. It is generated by feeding the question, along with the ground truth image annotations as the context. A text-only GPT-4 evaluator rates both answers. We query GPT-4 by putting the reference answer first, and then the answer generated by the candidate model. We upload images at their original resolution to Bard and Bing-Chat to obtain the results.
16
-
17
- | Approach | Conversation | Detail | Reasoning | Overall |
18
- |----------------|--------------|--------|-----------|---------|
19
- | Bard-0718 | 83.7 | 69.7 | 78.7 | 77.8 |
20
- | Bing-Chat-0629 | 59.6 | 52.2 | 90.1 | 71.5 |
21
- | LLaVA-13B-v1-336px-0719 (beam=1) | 64.3 | 55.9 | 81.7 | 70.1 |
22
- | LLaVA-13B-v1-336px-0719 (beam=5) | 68.4 | 59.9 | 84.3 | 73.5 |
23
-
24
- Note that Bard sometimes refuses to answer questions about images containing humans, and Bing-Chat blurs the human faces in the images. We also provide the benchmark score for the subset without humans.
25
-
26
- | Approach | Conversation | Detail | Reasoning | Overall |
27
- |----------------|--------------|--------|-----------|---------|
28
- | Bard-0718 | 94.9 | 74.3 | 84.3 | 84.6 |
29
- | Bing-Chat-0629 | 55.8 | 53.6 | 93.5 | 72.6 |
30
- | LLaVA-13B-v1-336px-0719 (beam=1) | 62.2 | 56.4 | 82.2 | 70.0 |
31
- | LLaVA-13B-v1-336px-0719 (beam=5) | 65.6 | 61.7 | 85.0 | 73.6 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/LLaVA_from_LLaMA2.md DELETED
@@ -1,29 +0,0 @@
1
- # LLaVA (based on Llama 2 LLM, Preview)
2
-
3
- *NOTE: This is a technical preview. We are still running hyperparameter search, and will release the final model soon. If you'd like to contribute to this, please contact us.*
4
-
5
- :llama: **-Introduction-** [Llama 2 is an open-source LLM released by Meta AI](https://about.fb.com/news/2023/07/llama-2/) today (July 18, 2023). Compared with its early version [Llama 1](https://ai.meta.com/blog/large-language-model-llama-meta-ai/), Llama 2 is more favored in ***stronger language performance***, ***longer context window***, and importantly ***commercially usable***! While Llama 2 is changing the LLM market landscape in the language space, its multimodal ability remains unknown. We quickly develop the LLaVA variant based on the latest Llama 2 checkpoints, and release it to the community for the public use.
6
-
7
- You need to apply for and download the latest Llama 2 checkpoints to start your own training (apply [here](https://ai.meta.com/resources/models-and-libraries/llama-downloads/))
8
-
9
-
10
- ## Training
11
-
12
- Please checkout [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh), [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune.sh), [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh).
13
-
14
- ## LLaVA (based on Llama 2), What is different?
15
-
16
- :volcano: How is the new LLaVA based on Llama 2 different from Llama 1? The comparisons of the training process are described:
17
- - **Pre-training**. The pre-trained base LLM is changed from Llama 1 to Llama 2
18
- - **Language instruction-tuning**. The previous LLaVA model starts with Vicuna, which is instruct tuned on ShareGPT data from Llama 1; The new LLaVA model starts with Llama 2 Chat, which is an instruct tuned checkpoint on dialogue data from Llama 2.
19
- - **Multimodal instruction-tuning**. The same LLaVA-Lighting process is applied.
20
-
21
-
22
- ### Results
23
-
24
- - Llama 2 is better at following the instructions of role playing; Llama 2 fails in following the instructions of translation
25
- - The quantitative evaluation on [LLaVA-Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) demonstrates on-par performance between Llama 2 and Llama 1 in LLaVA's multimodal chat ability.
26
-
27
-
28
- <img src="../images/llava_example_cmp.png" width="100%">
29
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/LoRA.md DELETED
@@ -1,46 +0,0 @@
1
- # LLaVA (LoRA, Preview)
2
-
3
- NOTE: This is a technical preview, and is not yet ready for production use. We are still running hyperparameter search for the LoRA model, and will release the final model soon. If you'd like to contribute to this, please contact us.
4
-
5
- You need latest code base for LoRA support (instructions [here](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base))
6
-
7
- ## Demo (Web UI)
8
-
9
- Please execute each of the commands below one by one (after the previous one has finished). The commands are the same as launching other demos except for an additional `--model-base` flag to specify the base model to use. Please make sure the base model corresponds to the LoRA checkpoint that you are using. For this technical preview, you need Vicuna v1.1 (7B) checkpoint (if you do not have that already, follow the instructions [here](https://github.com/lm-sys/FastChat#vicuna-weights)).
10
-
11
- #### Launch a controller
12
- ```Shell
13
- python -m llava.serve.controller --host 0.0.0.0 --port 10000
14
- ```
15
-
16
- #### Launch a gradio web server.
17
- ```Shell
18
- python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
19
- ```
20
- You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
21
-
22
- #### Launch a model worker
23
- ```Shell
24
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-vicuna-7b-v1.1-lcs_558k-instruct_80k_3e-lora-preview-alpha --model-base /path/to/vicuna-v1.1
25
- ```
26
- Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
27
-
28
- You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
29
-
30
-
31
- ## Training
32
-
33
- Please see sample training scripts for [LoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh) and [QLoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_qlora.sh).
34
-
35
- We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same.
36
-
37
- If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning.
38
-
39
- ## Create Merged Checkpoints
40
-
41
- ```Shell
42
- python scripts/merge_lora_weights.py \
43
- --model-path /path/to/lora_model \
44
- --model-base /path/to/base_model \
45
- --save-model-path /path/to/merge_model
46
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/MODEL_ZOO.md DELETED
@@ -1,138 +0,0 @@
1
- # Model Zoo
2
-
3
- **To Use LLaVA-1.5 checkpoints, your llava package version must be newer than 1.1.0. [Instructions](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base) on how to upgrade.**
4
-
5
- If you are interested in including any other details in Model Zoo, please open an issue :)
6
-
7
- The model weights below are *merged* weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM's model license: [Llama 2](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
8
-
9
- ## LLaVA-v1.5
10
-
11
- | Version | Size | Schedule | Checkpoint | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
12
- |----------|----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---|---|---|
13
- | LLaVA-1.5 | 7B | full_ft-1e | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 1510.7 | 64.3 | 58.3 | 58.6 | 65.4 | 31.1 |
14
- | LLaVA-1.5 | 13B | full_ft-1e | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 1531.3 | 67.7 | 63.6 | 61.6 | 72.5 | 36.1 |
15
- | LLaVA-1.5 | 7B | lora-1e | [liuhaotian/llava-v1.5-7b-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b-lora) | 79.1 | 63.0 | 47.8 | 68.4 | 58.2 | 86.4 | 1476.9 | 66.1 | 58.9 | 60.1 | 67.9 | 30.2 |
16
- | LLaVA-1.5 | 13B | lora-1e | [liuhaotian/llava-v1.5-13b-lora](https://huggingface.co/liuhaotian/llava-v1.5-13b-lora) | 80.0 | 63.3 | 58.9 | 71.2 | 60.2 | 86.7 | 1541.7 | 68.5 | 61.5 | 61.3 | 69.5 | 38.3 |
17
-
18
- Base model: Vicuna v1.5. Training logs: [wandb](https://api.wandb.ai/links/lht/6orh56wc).
19
-
20
- <p align="center">
21
- <img src="../images/llava_v1_5_radar.jpg" width="500px"> <br>
22
- LLaVA-1.5 achieves SoTA performance across 11 benchmarks.
23
- </p>
24
-
25
-
26
- ## LLaVA-v1
27
-
28
- *Note: We recommend using the most capable LLaVA-v1.5 series above for the best performance.*
29
-
30
- | Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | LLaVA-Bench-Conv | LLaVA-Bench-Detail | LLaVA-Bench-Complex | LLaVA-Bench-Overall | Download |
31
- |----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|--------------------|---------------------|---------------------|---------------------|
32
- | Vicuna-13B-v1.3 | CLIP-L-336px | LCS-558K | 1e | LLaVA-Instruct-80K | proj-1e, lora-1e | 64.3 | 55.9 | 81.7 | 70.1 | [LoRA](https://huggingface.co/liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3) [LoRA-Merged](https://huggingface.co/liuhaotian/llava-v1-0719-336px-lora-merge-vicuna-13b-v1.3) |
33
- | LLaMA-2-13B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | 56.7 | 58.6 | 80.0 | 67.9 | [ckpt](https://huggingface.co/liuhaotian/llava-llama-2-13b-chat-lightning-preview) |
34
- | LLaMA-2-7B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | lora-1e | 51.2 | 58.9 | 71.6 | 62.8 | [LoRA](https://huggingface.co/liuhaotian/llava-llama-2-7b-chat-lightning-lora-preview) |
35
-
36
-
37
- ## Projector weights
38
-
39
- These are projector weights we have pretrained. You can use these projector weights for visual instruction tuning. They are just pretrained on image-text pairs and are NOT instruction-tuned, which means they do NOT follow instructions as well as our official models and can output repetitive, lengthy, and garbled outputs. If you want to have nice conversations with LLaVA, use the checkpoints above (LLaVA v1.5).
40
-
41
- NOTE: These projector weights are only compatible with `llava>=1.0.0`. Please check out the latest codebase if your local code version is below v1.0.0.
42
-
43
- NOTE: When you use our pretrained projector for visual instruction tuning, it is very important to use the same base LLM and vision encoder as the one we used for pretraining the projector. Otherwise, the performance will be very poor.
44
-
45
- When using these projector weights to instruction-tune your LMM, please make sure that these options are correctly set as follows,
46
-
47
- ```Shell
48
- --mm_use_im_start_end False
49
- --mm_use_im_patch_token False
50
- ```
51
-
52
- | Base LLM | Vision Encoder | Projection | Pretrain Data | Pretraining schedule | Download |
53
- |----------|----------------|---------------|----------------------|----------|----------|
54
- | Vicuna-13B-v1.5 | CLIP-L-336px | MLP-2x | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-13b-v1.5) |
55
- | Vicuna-7B-v1.5 | CLIP-L-336px | MLP-2x | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5) |
56
- | LLaMA-2-13B-Chat | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-llama-2-13b-chat) |
57
- | LLaMA-2-7B-Chat | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-llama-2-7b-chat) |
58
- | LLaMA-2-13B-Chat | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-llama-2-13b-chat) |
59
- | LLaMA-2-7B-Chat | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-llama-2-7b-chat) |
60
- | Vicuna-13B-v1.3 | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-vicuna-13b-v1.3) |
61
- | Vicuna-7B-v1.3 | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-vicuna-7b-v1.3) |
62
- | Vicuna-13B-v1.3 | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-13b-v1.3) |
63
- | Vicuna-7B-v1.3 | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-7b-v1.3) |
64
-
65
-
66
- ## Science QA Checkpoints
67
-
68
- | Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download |
69
- |----------|----------------|---------------|----------------------|-----------------|--------------------|---------------------|
70
- | Vicuna-13B-v1.3 | CLIP-L | LCS-558K | 1e | ScienceQA | full_ft-12e | [ckpt](https://huggingface.co/liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3) |
71
-
72
-
73
- ## Legacy Models (merged weights)
74
-
75
- The model weights below are *merged* weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM's model license.
76
-
77
- | Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download |
78
- |----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|
79
- | MPT-7B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | [preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview) |
80
-
81
-
82
- ## Legacy Models (delta weights)
83
-
84
- The model weights below are *delta* weights. The usage of LLaVA checkpoints should comply with the base LLM's model license: [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
85
-
86
- You can add our delta to the original LLaMA weights to obtain the LLaVA weights.
87
-
88
- Instructions:
89
-
90
- 1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
91
- 2. Use the following scripts to get LLaVA weights by applying our delta. It will automatically download delta weights from our Hugging Face account. In the script below, we use the delta weights of [`liuhaotian/LLaVA-7b-delta-v0`](https://huggingface.co/liuhaotian/LLaVA-7b-delta-v0) as an example. It can be adapted for other delta weights by changing the `--delta` argument (and base/target accordingly).
92
-
93
- ```bash
94
- python3 -m llava.model.apply_delta \
95
- --base /path/to/llama-7b \
96
- --target /output/path/to/LLaVA-7B-v0 \
97
- --delta liuhaotian/LLaVA-7b-delta-v0
98
- ```
99
-
100
- | Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download |
101
- |----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|
102
- | Vicuna-13B-v1.1 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1) |
103
- | Vicuna-7B-v1.1 | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-Lightning-7B-delta-v1-1) |
104
- | Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0) |
105
- | Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | ScienceQA | full_ft-12e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0-science_qa) |
106
- | Vicuna-7B-v0 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-7b-delta-v0) |
107
-
108
-
109
-
110
- ## Legacy Projector weights
111
-
112
- The following projector weights are deprecated, and the support for them may be removed in the future. They do not support zero-shot inference. Please use the projector weights in the [table above](#projector-weights) if possible.
113
-
114
- **NOTE**: When you use our pretrained projector for visual instruction tuning, it is very important to **use the same base LLM and vision encoder** as the one we used for pretraining the projector. Otherwise, the performance will be very bad.
115
-
116
- When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,
117
-
118
- ```Shell
119
- --mm_use_im_start_end True
120
- --mm_use_im_patch_token False
121
- ```
122
-
123
- | Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Download |
124
- |----------|----------------|---------------|----------------------|----------|
125
- | Vicuna-7B-v1.1 | CLIP-L | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-7b-pretrain-projector-v1-1-LCS-558K-blip_caption.bin) |
126
- | Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption.bin) |
127
- | Vicuna-7B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-7b-pretrain-projector-v0-CC3M-595K-original_caption.bin) |
128
-
129
- When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,
130
-
131
- ```Shell
132
- --mm_use_im_start_end False
133
- --mm_use_im_patch_token False
134
- ```
135
-
136
- | Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Download |
137
- |----------|----------------|---------------|----------------------|----------|
138
- | Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption-no_im_token.bin) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/ScienceQA.md DELETED
@@ -1,53 +0,0 @@
1
- ### ScienceQA
2
-
3
- #### Prepare Data
4
- 1. Please see ScienceQA [repo](https://github.com/lupantech/ScienceQA) for setting up the dataset.
5
- 2. Generate ScienceQA dataset for LLaVA conversation-style format.
6
-
7
- ```Shell
8
- python scripts/convert_sqa_to_llava.py \
9
- convert_to_llava \
10
- --base-dir /path/to/ScienceQA/data/scienceqa \
11
- --prompt-format "QCM-LEA" \
12
- --split {train,val,minival,test,minitest}
13
- ```
14
-
15
- #### Training
16
-
17
- 1. Pretraining
18
-
19
- You can download our pretrained projector weights from our [Model Zoo](), or train your own projector weights using [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh).
20
-
21
- 2. Finetuning
22
-
23
- See [`finetune_sqa.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_sqa.sh).
24
-
25
- #### Evaluation
26
-
27
- 1. Multiple-GPU inference
28
- You may evaluate this with multiple GPUs, and concatenate the generated jsonl files. Please refer to our script for [batch evaluation](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_batch.sh) and [results gathering](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_gather.sh).
29
-
30
- 2. Single-GPU inference
31
-
32
- (a) Generate LLaVA responses on ScienceQA dataset
33
-
34
- ```Shell
35
- python -m llava.eval.model_vqa_science \
36
- --model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \
37
- --question-file /path/to/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \
38
- --image-folder /path/to/ScienceQA/data/scienceqa/images/test \
39
- --answers-file vqa/results/ScienceQA/test_llava-13b.jsonl \
40
- --conv-mode llava_v1
41
- ```
42
-
43
- (b) Evaluate the generated responses
44
-
45
- ```Shell
46
- python eval_science_qa.py \
47
- --base-dir /path/to/ScienceQA/data/scienceqa \
48
- --result-file vqa/results/ScienceQA/test_llava-13b.jsonl \
49
- --output-file vqa/results/ScienceQA/test_llava-13b_output.json \
50
- --output-result vqa/results/ScienceQA/test_llava-13b_result.json \
51
- ```
52
-
53
- For reference, we attach our prediction file [`test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json) and [`test_sqa_llava_13b_v0.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_13b_v0.json) for comparison when reproducing our results, as well as for further analysis in detail.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/Windows.md DELETED
@@ -1,27 +0,0 @@
1
- # Run LLaVA on Windows
2
-
3
- *NOTE: LLaVA on Windows is not fully supported. Currently we only support 16-bit inference. For a more complete support, please use [WSL2](https://learn.microsoft.com/en-us/windows/wsl/install) for now. More functionalities on Windows is to be added soon, stay tuned.*
4
-
5
- ## Installation
6
-
7
- 1. Clone this repository and navigate to LLaVA folder
8
- ```bash
9
- git clone https://github.com/haotian-liu/LLaVA.git
10
- cd LLaVA
11
- ```
12
-
13
- 2. Install Package
14
- ```Shell
15
- conda create -n llava python=3.10 -y
16
- conda activate llava
17
- python -mpip install --upgrade pip # enable PEP 660 support
18
- pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
19
- pip install -e .
20
- pip uninstall bitsandbytes
21
- ```
22
-
23
- ## Run demo
24
-
25
- See instructions [here](https://github.com/haotian-liu/LLaVA#demo).
26
-
27
- Note that quantization (4-bit, 8-bit) is *NOT* supported on Windows. Stay tuned for the 4-bit support on Windows!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/docs/macOS.md DELETED
@@ -1,29 +0,0 @@
1
- # Run LLaVA on macOS
2
-
3
- *NOTE: LLaVA on macOS is not fully supported. Currently we only support 16-bit inference. More functionalities on macOS is to be added soon, stay tuned.*
4
-
5
- ## Installation
6
-
7
- 1. Clone this repository and navigate to LLaVA folder
8
- ```bash
9
- git clone https://github.com/haotian-liu/LLaVA.git
10
- cd LLaVA
11
- ```
12
-
13
- 2. Install Package
14
- ```Shell
15
- conda create -n llava python=3.10 -y
16
- conda activate llava
17
- python -mpip install --upgrade pip # enable PEP 660 support
18
- pip install -e .
19
- pip install torch==2.1.0 torchvision==0.16.0
20
- pip uninstall bitsandbytes
21
- ```
22
-
23
- ## Run demo
24
-
25
- Specify `--device mps` when launching model worker or CLI.
26
-
27
- See instructions [here](https://github.com/haotian-liu/LLaVA#demo).
28
-
29
- Note that quantization (4-bit, 8-bit) is *NOT* supported on macOS. Stay tuned for the 4-bit support on macOS!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/images/demo_cli.gif DELETED

Git LFS Details

  • SHA256: 09227563f4fe04f077587eeb7b7c33ace2fbb8830e6cc9cfce03a25a57c43bfe
  • Pointer size: 133 Bytes
  • Size of remote file: 10 MB
models/LLaVA/images/llava_example_cmp.png DELETED
Binary file (324 kB)
 
models/LLaVA/images/llava_logo.png DELETED
Binary file (268 kB)
 
models/LLaVA/images/llava_v1_5_radar.jpg DELETED
Binary file (103 kB)
 
models/LLaVA/llava.egg-info/PKG-INFO DELETED
@@ -1,457 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: llava
3
- Version: 1.1.3
4
- Summary: Towards GPT-4 like large language and visual assistant.
5
- Project-URL: Homepage, https://llava-vl.github.io
6
- Project-URL: Bug Tracker, https://github.com/haotian-liu/LLaVA/issues
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: Apache Software License
9
- Requires-Python: >=3.8
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
- Requires-Dist: torch==2.0.1
13
- Requires-Dist: torchvision==0.15.2
14
- Requires-Dist: transformers==4.31.0
15
- Requires-Dist: tokenizers<0.14,>=0.12.1
16
- Requires-Dist: sentencepiece==0.1.99
17
- Requires-Dist: shortuuid
18
- Requires-Dist: accelerate==0.21.0
19
- Requires-Dist: peft==0.4.0
20
- Requires-Dist: bitsandbytes==0.41.0
21
- Requires-Dist: pydantic<2,>=1
22
- Requires-Dist: markdown2[all]
23
- Requires-Dist: numpy
24
- Requires-Dist: scikit-learn==1.2.2
25
- Requires-Dist: gradio==3.35.2
26
- Requires-Dist: gradio_client==0.2.9
27
- Requires-Dist: requests
28
- Requires-Dist: httpx==0.24.0
29
- Requires-Dist: uvicorn
30
- Requires-Dist: fastapi
31
- Requires-Dist: einops==0.6.1
32
- Requires-Dist: einops-exts==0.0.4
33
- Requires-Dist: timm==0.6.13
34
- Provides-Extra: train
35
- Requires-Dist: deepspeed==0.9.5; extra == "train"
36
- Requires-Dist: ninja; extra == "train"
37
- Requires-Dist: wandb; extra == "train"
38
-
39
- # 🌋 LLaVA: Large Language and Vision Assistant
40
-
41
- *Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.*
42
-
43
- [[Project Page](https://llava-vl.github.io/)] [[Demo](https://llava.hliu.cc/)] [[Data](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)] [[Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)]
44
-
45
- 🤝Community Contributions: [[llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436)] [[Colab](https://github.com/camenduru/LLaVA-colab)] [[🤗Space](https://huggingface.co/spaces/badayvedat/LLaVA)] [[Replicate](https://replicate.com/yorickvp/llava-13b)] [[AutoGen](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)] [[BakLLaVA](https://github.com/SkunkworksAI/BakLLaVA)]
46
-
47
- **Improved Baselines with Visual Instruction Tuning** [[Paper](https://arxiv.org/abs/2310.03744)] <br>
48
- [Haotian Liu](https://hliu.cc), [Chunyuan Li](https://chunyuan.li/), [Yuheng Li](https://yuheng-li.github.io/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/)
49
-
50
- **Visual Instruction Tuning** (NeurIPS 2023, **Oral**) [[Paper](https://arxiv.org/abs/2304.08485)]<br>
51
- [Haotian Liu*](https://hliu.cc), [Chunyuan Li*](https://chunyuan.li/), [Qingyang Wu](https://scholar.google.ca/citations?user=HDiw-TsAAAAJ&hl=en/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) (*Equal Contribution)
52
-
53
- <!--p align="center">
54
- <a href="https://llava.hliu.cc/"><img src="images/llava_logo.png" width="50%"></a> <br>
55
- Generated by <a href="https://gligen.github.io/">GLIGEN</a> via "a cute lava llama with glasses" and box prompt
56
- </p-->
57
-
58
-
59
- ## Release
60
- - [11/10] [LLaVA-Plus](https://llava-vl.github.io/llava-plus/) is released: Learning to Use Tools for Creating Multimodal Agents, with LLaVA-Plus (LLaVA that Plug and Learn to Use Skills). [[Project Page](https://llava-vl.github.io/llava-plus/)] [[Demo](https://llavaplus.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase)] [[Paper](https://arxiv.org/abs/2311.05437)]
61
- - [11/2] [LLaVA-Interactive](https://llava-vl.github.io/llava-interactive/) is released: Experience the future of human-AI multimodal interaction with an all-in-one demo for Image Chat, Segmentation, Generation and Editing. [[Project Page](https://llava-vl.github.io/llava-interactive/)] [[Demo](https://llavainteractive.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Interactive-Demo)] [[Paper](https://arxiv.org/abs/2311.00571)]
62
- - [10/26] 🔥 LLaVA-1.5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement ([ckpts](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md#llava-v15), [script](https://github.com/haotian-liu/LLaVA#train)). We also provide a [doc](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md) on how to finetune LLaVA-1.5 on your own dataset with LoRA.
63
- - [10/12] Check out the Korean LLaVA (Ko-LLaVA), created by ETRI, who has generously supported our research! [[🤗 Demo](https://huggingface.co/spaces/etri-vilab/Ko-LLaVA)]
64
- - [10/5] 🔥 LLaVA-1.5 is out! Achieving SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods like Qwen-VL-Chat that use billion-scale data. Check out the [technical report](https://arxiv.org/abs/2310.03744), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)!
65
- - [9/26] LLaVA is improved with reinforcement learning from human feedback (RLHF) to improve fact grounding and reduce hallucination. Check out the new SFT and RLHF checkpoints at project [[LLavA-RLHF]](https://llava-rlhf.github.io/)
66
- - [9/22] [LLaVA](https://arxiv.org/abs/2304.08485) is accepted by NeurIPS 2023 as **oral presentation**, and [LLaVA-Med](https://arxiv.org/abs/2306.00890) is accepted by NeurIPS 2023 Datasets and Benchmarks Track as **spotlight presentation**.
67
-
68
- <details>
69
- <summary>More</summary>
70
-
71
- - [11/6] Support **Intel** dGPU and CPU platforms. [More details here.](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel)
72
- - [10/12] LLaVA is now supported in [llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436) with 4-bit / 5-bit quantization support!
73
- - [10/11] The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)!
74
- - [10/10] [Roboflow Deep Dive](https://blog.roboflow.com/first-impressions-with-llava-1-5/): First Impressions with LLaVA-1.5.
75
- - [9/20] We summarize our empirical study of training 33B and 65B LLaVA models in a [note](https://arxiv.org/abs/2309.09958). Further, if you are interested in the comprehensive review, evolution and trend of multimodal foundation models, please check out our recent survey paper [``Multimodal Foundation Models: From Specialists to General-Purpose Assistants''.](https://arxiv.org/abs/2309.10020)
76
- <p align="center">
77
- <img src="https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings/blob/main/images/mfm_evolution.jpeg?raw=true" width=50%/>
78
- </p>
79
-
80
- - [7/19] 🔥 We release a major upgrade, including support for LLaMA-2, LoRA training, 4-/8-bit inference, higher resolution (336x336), and a lot more. We release [LLaVA Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) for benchmarking open-ended visual chat with results from Bard and Bing-Chat. We also support and verify training with RTX 3090 and RTX A6000. Check out [LLaVA-from-LLaMA-2](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_from_LLaMA2.md), and our [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)!
81
- - [6/26] [CVPR 2023 Tutorial](https://vlp-tutorial.github.io/) on **Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4**! Please check out [[Slides](https://datarelease.blob.core.windows.net/tutorial/vision_foundation_models_2023/slides/Chunyuan_cvpr2023_tutorial_lmm.pdf)] [[Notes](https://arxiv.org/abs/2306.14895)] [[YouTube](https://youtu.be/mkI7EPD1vp8)] [[Bilibli](https://www.bilibili.com/video/BV1Ng4y1T7v3/)].
82
- - [6/11] We released the preview for the most requested feature: DeepSpeed and LoRA support! Please see documentations [here](./docs/LoRA.md).
83
- - [6/1] We released **LLaVA-Med: Large Language and Vision Assistant for Biomedicine**, a step towards building biomedical domain large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2306.00890) and [page](https://github.com/microsoft/LLaVA-Med).
84
- - [5/6] We are releasing [LLaVA-Lighting-MPT-7B-preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview), based on MPT-7B-Chat! See [here](#LLaVA-MPT-7b) for more details.
85
- - [5/2] 🔥 We are releasing LLaVA-Lighting! Train a lite, multimodal GPT-4 with just $40 in 3 hours! See [here](#train-llava-lightning) for more details.
86
- - [4/27] Thanks to the community effort, LLaVA-13B with 4-bit quantization allows you to run on a GPU with as few as 12GB VRAM! Try it out [here](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/llava).
87
- - [4/17] 🔥 We released **LLaVA: Large Language and Vision Assistant**. We propose visual instruction tuning, towards building large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2304.08485) and [demo](https://llava.hliu.cc/).
88
-
89
- </details>
90
-
91
- <!-- <a href="https://llava.hliu.cc/"><img src="assets/demo.gif" width="70%"></a> -->
92
-
93
- [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
94
- **Usage and License Notices**: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the [OpenAI Terms of Use](https://openai.com/policies/terms-of-use) for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. [Llama community license](https://ai.meta.com/llama/license/) for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.
95
-
96
-
97
- ## Contents
98
- - [Install](#install)
99
- - [LLaVA Weights](#llava-weights)
100
- - [Demo](#Demo)
101
- - [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)
102
- - [Dataset](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)
103
- - [Train](#train)
104
- - [Evaluation](#evaluation)
105
-
106
- ## Install
107
-
108
- If you are not using Linux, do *NOT* proceed, see instructions for [macOS](https://github.com/haotian-liu/LLaVA/blob/main/docs/macOS.md) and [Windows](https://github.com/haotian-liu/LLaVA/blob/main/docs/Windows.md).
109
-
110
- 1. Clone this repository and navigate to LLaVA folder
111
- ```bash
112
- git clone https://github.com/haotian-liu/LLaVA.git
113
- cd LLaVA
114
- ```
115
-
116
- 2. Install Package
117
- ```Shell
118
- conda create -n llava python=3.10 -y
119
- conda activate llava
120
- pip install --upgrade pip # enable PEP 660 support
121
- pip install -e .
122
- ```
123
-
124
- 3. Install additional packages for training cases
125
- ```
126
- pip install -e ".[train]"
127
- pip install flash-attn --no-build-isolation
128
- ```
129
-
130
- ### Upgrade to latest code base
131
-
132
- ```Shell
133
- git pull
134
- pip install -e .
135
- ```
136
-
137
- ### Quick Start With HuggingFace
138
-
139
- <details>
140
- <summary>Example Code</summary>
141
-
142
- ```Python
143
- from llava.model.builder import load_pretrained_model
144
- from llava.mm_utils import get_model_name_from_path
145
- from llava.eval.run_llava import eval_model
146
-
147
- model_path = "liuhaotian/llava-v1.5-7b"
148
-
149
- tokenizer, model, image_processor, context_len = load_pretrained_model(
150
- model_path=model_path,
151
- model_base=None,
152
- model_name=get_model_name_from_path(model_path)
153
- )
154
- ```
155
-
156
- Check out the details wth the `load_pretrained_model` function in `llava/model/builder.py`.
157
-
158
- You can also use the `eval_model` function in `llava/eval/run_llava.py` to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository.
159
-
160
- ``` python
161
- model_path = "liuhaotian/llava-v1.5-7b"
162
- prompt = "What are the things I should be cautious about when I visit here?"
163
- image_file = "https://llava-vl.github.io/static/images/view.jpg"
164
-
165
- args = type('Args', (), {
166
- "model_path": model_path,
167
- "model_base": None,
168
- "model_name": get_model_name_from_path(model_path),
169
- "query": prompt,
170
- "conv_mode": None,
171
- "image_file": image_file,
172
- "sep": ",",
173
- "temperature": 0,
174
- "top_p": None,
175
- "num_beams": 1,
176
- "max_new_tokens": 512
177
- })()
178
-
179
- eval_model(args)
180
- ```
181
- </details>
182
-
183
- ## LLaVA Weights
184
- Please check out our [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) for all public LLaVA checkpoints, and the instructions of how to use the weights.
185
-
186
- ## Demo
187
-
188
- To run our demo, you need to prepare LLaVA checkpoints locally. Please follow the instructions [here](#llava-weights) to download the checkpoints.
189
-
190
- ### Gradio Web UI
191
-
192
- To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*.
193
-
194
- ```mermaid
195
- flowchart BT
196
- %% Declare Nodes
197
- gws("Gradio (UI Server)")
198
- c("Controller (API Server):<br/>PORT: 10000")
199
- mw7b("Model Worker:<br/>llava-v1.5-7b<br/>PORT: 40000")
200
- mw13b("Model Worker:<br/>llava-v1.5-13b<br/>PORT: 40001")
201
-
202
- %% Declare Styles
203
- classDef data fill:#3af,stroke:#48a,stroke-width:2px,color:#444
204
- classDef success fill:#8f8,stroke:#0a0,stroke-width:2px,color:#444
205
- classDef failure fill:#f88,stroke:#f00,stroke-width:2px,color:#444
206
-
207
- %% Assign Styles
208
- class id,od data;
209
- class cimg,cs_s,scsim_s success;
210
- class ncimg,cs_f,scsim_f failure;
211
-
212
- subgraph Demo Connections
213
- direction BT
214
- c<-->gws
215
-
216
- mw7b<-->c
217
- mw13b<-->c
218
- end
219
- ```
220
-
221
- #### Launch a controller
222
- ```Shell
223
- python -m llava.serve.controller --host 0.0.0.0 --port 10000
224
- ```
225
-
226
- #### Launch a gradio web server.
227
- ```Shell
228
- python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
229
- ```
230
- You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
231
-
232
- #### Launch a model worker
233
-
234
- This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`.
235
-
236
- ```Shell
237
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
238
- ```
239
- Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
240
-
241
- You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
242
- ```Shell
243
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
244
- ```
245
-
246
- If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the `--device` flag: `--device mps`.
247
-
248
- #### Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)
249
-
250
- If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with `CUDA_VISIBLE_DEVICES`. Below is an example of running with the first two GPUs.
251
-
252
- ```Shell
253
- CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
254
- ```
255
-
256
- #### Launch a model worker (4-bit, 8-bit inference, quantized)
257
-
258
- You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append `--load-4bit` or `--load-8bit` to the **model worker** command that you are executing. Below is an example of running with 4-bit quantization.
259
-
260
- ```Shell
261
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit
262
- ```
263
-
264
- #### Launch a model worker (LoRA weights, unmerged)
265
-
266
- You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have `lora-merge` in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B).
267
-
268
- To load unmerged LoRA weights, you simply need to pass an additional argument `--model-base`, which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md).
269
-
270
- ```Shell
271
- python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3
272
- ```
273
-
274
- ### CLI Inference
275
-
276
- Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU.
277
-
278
- ```Shell
279
- python -m llava.serve.cli \
280
- --model-path liuhaotian/llava-v1.5-7b \
281
- --image-file "https://llava-vl.github.io/static/images/view.jpg" \
282
- --load-4bit
283
- ```
284
-
285
- <img src="images/demo_cli.gif" width="70%">
286
-
287
- ## Train
288
-
289
- *Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of [this](https://github.com/haotian-liu/LLaVA/tree/v1.0.1) version for now. We'll add them in a separate doc later.*
290
-
291
- LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a *frozen pretrained* vision encoder to a *frozen LLM*; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions.
292
-
293
- LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`.
294
-
295
- ### Hyperparameters
296
- We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.
297
-
298
- 1. Pretraining
299
-
300
- | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
301
- | --- | ---: | ---: | ---: | ---: | ---: |
302
- | LLaVA-v1.5-13B | 256 | 1e-3 | 1 | 2048 | 0 |
303
-
304
- 2. Finetuning
305
-
306
- | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
307
- | --- | ---: | ---: | ---: | ---: | ---: |
308
- | LLaVA-v1.5-13B | 128 | 2e-5 | 1 | 2048 | 0 |
309
-
310
- ### Download Vicuna checkpoints (automatically)
311
-
312
- Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.
313
-
314
- ### Pretrain (feature alignment)
315
-
316
- Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
317
-
318
- Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.
319
-
320
- Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/pretrain.sh).
321
-
322
- - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector.
323
- - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px.
324
-
325
- <details>
326
- <summary>Pretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)</summary>
327
-
328
- We provide training script with DeepSpeed [here](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain_xformers.sh).
329
- Tips:
330
- - If you are using V100 which is not supported by FlashAttention, you can use the [memory-efficient attention](https://arxiv.org/abs/2112.05682) implemented in [xFormers](https://github.com/facebookresearch/xformers). Install xformers and replace `llava/train/train_mem.py` above with [llava/train/train_xformers.py](llava/train/train_xformers.py).
331
- </details>
332
-
333
- ### Visual Instruction Tuning
334
-
335
- 1. Prepare data
336
-
337
- Please download the annotation of the final mixture our instruction tuning data [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), and download the images from constituting datasets:
338
-
339
- - COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
340
- - GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
341
- - OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`**
342
- - TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
343
- - VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
344
-
345
- After downloading all of them, organize the data as follows in `./playground/data`,
346
-
347
- ```
348
- ├── coco
349
- │ └── train2017
350
- ├── gqa
351
- │ └── images
352
- ├── ocr_vqa
353
- │ └── images
354
- ├── textvqa
355
- │ └── train_images
356
- └── vg
357
- ├── VG_100K
358
- └── VG_100K_2
359
- ```
360
-
361
- 2. Start training!
362
-
363
- You may download our pretrained projectors in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.
364
-
365
- Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).
366
-
367
- Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh).
368
-
369
- If you are do not have enough GPU memory:
370
-
371
- - Use LoRA: [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_lora.sh). We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure `per_device_train_batch_size*gradient_accumulation_steps` is the same as the provided script for best reproducibility.
372
- - Replace `zero3.json` with `zero3_offload.json` which offloads some parameters to CPU RAM. This slows down the training speed.
373
-
374
- If you are interested in finetuning LLaVA model to your own task/data, please check out [`Finetune_Custom_Data.md`](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md)。
375
-
376
- New options to note:
377
-
378
- - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector.
379
- - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px.
380
- - `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.
381
- - `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.
382
-
383
- ## Evaluation
384
-
385
- In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.
386
-
387
- See [Evaluation.md](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md).
388
-
389
- ### GPT-assisted Evaluation
390
-
391
- Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.
392
-
393
- 1. Generate LLaVA responses
394
-
395
- ```Shell
396
- python model_vqa.py \
397
- --model-path ./checkpoints/LLaVA-13B-v0 \
398
- --question-file \
399
- playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
400
- --image-folder \
401
- /path/to/coco2014_val \
402
- --answers-file \
403
- /path/to/answer-file-our.jsonl
404
- ```
405
-
406
- 2. Evaluate the generated responses. In our case, [`answer-file-ref.jsonl`](./playground/data/coco2014_val_qa_eval/qa90_gpt4_answer.jsonl) is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.
407
-
408
- ```Shell
409
- OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \
410
- --question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
411
- --context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \
412
- --answer-list \
413
- /path/to/answer-file-ref.jsonl \
414
- /path/to/answer-file-our.jsonl \
415
- --rule llava/eval/table/rule.json \
416
- --output /path/to/review.json
417
- ```
418
-
419
- 3. Summarize the evaluation results
420
-
421
- ```Shell
422
- python summarize_gpt_review.py
423
- ```
424
-
425
- ## Citation
426
-
427
- If you find LLaVA useful for your research and applications, please cite using this BibTeX:
428
- ```bibtex
429
-
430
- @misc{liu2023improvedllava,
431
- title={Improved Baselines with Visual Instruction Tuning},
432
- author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
433
- publisher={arXiv:2310.03744},
434
- year={2023},
435
- }
436
-
437
- @misc{liu2023llava,
438
- title={Visual Instruction Tuning},
439
- author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
440
- publisher={arXiv:2304.08485},
441
- year={2023},
442
- }
443
- ```
444
-
445
- ## Acknowledgement
446
-
447
- - [Vicuna](https://github.com/lm-sys/FastChat): the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!
448
-
449
- ## Related Projects
450
-
451
- - [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
452
- - [LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day](https://github.com/microsoft/LLaVA-Med)
453
- - [Otter: In-Context Multi-Modal Instruction Tuning](https://github.com/Luodian/Otter)
454
-
455
- For future project ideas, please check out:
456
- - [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
457
- - [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) to detect, segment, and generate anything by marrying [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) and [Segment-Anything](https://github.com/facebookresearch/segment-anything).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava.egg-info/SOURCES.txt DELETED
@@ -1,68 +0,0 @@
1
- LICENSE
2
- README.md
3
- pyproject.toml
4
- llava/__init__.py
5
- llava/constants.py
6
- llava/conversation.py
7
- llava/mm_utils.py
8
- llava/utils.py
9
- llava.egg-info/PKG-INFO
10
- llava.egg-info/SOURCES.txt
11
- llava.egg-info/dependency_links.txt
12
- llava.egg-info/requires.txt
13
- llava.egg-info/top_level.txt
14
- llava/eval/eval_gpt_review.py
15
- llava/eval/eval_gpt_review_bench.py
16
- llava/eval/eval_gpt_review_visual.py
17
- llava/eval/eval_pope.py
18
- llava/eval/eval_science_qa.py
19
- llava/eval/eval_science_qa_gpt4.py
20
- llava/eval/eval_science_qa_gpt4_requery.py
21
- llava/eval/eval_textvqa.py
22
- llava/eval/generate_webpage_data_from_table.py
23
- llava/eval/m4c_evaluator.py
24
- llava/eval/model_qa.py
25
- llava/eval/model_vqa.py
26
- llava/eval/model_vqa_loader.py
27
- llava/eval/model_vqa_mmbench.py
28
- llava/eval/model_vqa_qbench.py
29
- llava/eval/model_vqa_science.py
30
- llava/eval/qa_baseline_gpt35.py
31
- llava/eval/run_llava.py
32
- llava/eval/summarize_gpt_review.py
33
- llava/model/__init__.py
34
- llava/model/apply_delta.py
35
- llava/model/builder.py
36
- llava/model/consolidate.py
37
- llava/model/llava_arch.py
38
- llava/model/make_delta.py
39
- llava/model/utils.py
40
- llava/model/language_model/llava_llama.py
41
- llava/model/language_model/llava_mpt.py
42
- llava/model/language_model/mpt/adapt_tokenizer.py
43
- llava/model/language_model/mpt/attention.py
44
- llava/model/language_model/mpt/blocks.py
45
- llava/model/language_model/mpt/configuration_mpt.py
46
- llava/model/language_model/mpt/custom_embedding.py
47
- llava/model/language_model/mpt/flash_attn_triton.py
48
- llava/model/language_model/mpt/hf_prefixlm_converter.py
49
- llava/model/language_model/mpt/meta_init_context.py
50
- llava/model/language_model/mpt/modeling_mpt.py
51
- llava/model/language_model/mpt/norm.py
52
- llava/model/language_model/mpt/param_init_fns.py
53
- llava/model/multimodal_encoder/builder.py
54
- llava/model/multimodal_encoder/clip_encoder.py
55
- llava/model/multimodal_projector/builder.py
56
- llava/serve/__init__.py
57
- llava/serve/cli.py
58
- llava/serve/controller.py
59
- llava/serve/gradio_web_server.py
60
- llava/serve/model_worker.py
61
- llava/serve/register_worker.py
62
- llava/serve/test_message.py
63
- llava/train/llama_flash_attn_monkey_patch.py
64
- llava/train/llama_xformers_attn_monkey_patch.py
65
- llava/train/llava_trainer.py
66
- llava/train/train.py
67
- llava/train/train_mem.py
68
- llava/train/train_xformers.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava.egg-info/dependency_links.txt DELETED
@@ -1 +0,0 @@
1
-
 
 
models/LLaVA/llava.egg-info/requires.txt DELETED
@@ -1,27 +0,0 @@
1
- torch==2.0.1
2
- torchvision==0.15.2
3
- transformers==4.31.0
4
- tokenizers<0.14,>=0.12.1
5
- sentencepiece==0.1.99
6
- shortuuid
7
- accelerate==0.21.0
8
- peft==0.4.0
9
- bitsandbytes==0.41.0
10
- pydantic<2,>=1
11
- markdown2[all]
12
- numpy
13
- scikit-learn==1.2.2
14
- gradio==3.35.2
15
- gradio_client==0.2.9
16
- requests
17
- httpx==0.24.0
18
- uvicorn
19
- fastapi
20
- einops==0.6.1
21
- einops-exts==0.0.4
22
- timm==0.6.13
23
-
24
- [train]
25
- deepspeed==0.9.5
26
- ninja
27
- wandb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava.egg-info/top_level.txt DELETED
@@ -1,2 +0,0 @@
1
- images
2
- llava
 
 
 
models/LLaVA/llava/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .model import LlavaLlamaForCausalLM
 
 
models/LLaVA/llava/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (247 Bytes)
 
models/LLaVA/llava/__pycache__/__init__.cpython-311.pyc DELETED
Binary file (273 Bytes)
 
models/LLaVA/llava/__pycache__/__init__.cpython-38.pyc DELETED
Binary file (227 Bytes)
 
models/LLaVA/llava/__pycache__/constants.cpython-310.pyc DELETED
Binary file (555 Bytes)
 
models/LLaVA/llava/__pycache__/constants.cpython-38.pyc DELETED
Binary file (535 Bytes)
 
models/LLaVA/llava/__pycache__/conversation.cpython-310.pyc DELETED
Binary file (10.4 kB)
 
models/LLaVA/llava/__pycache__/conversation.cpython-38.pyc DELETED
Binary file (10.4 kB)
 
models/LLaVA/llava/__pycache__/mm_utils.cpython-310.pyc DELETED
Binary file (4.61 kB)
 
models/LLaVA/llava/__pycache__/mm_utils.cpython-38.pyc DELETED
Binary file (4.59 kB)
 
models/LLaVA/llava/__pycache__/utils.cpython-310.pyc DELETED
Binary file (4.09 kB)
 
models/LLaVA/llava/__pycache__/utils.cpython-38.pyc DELETED
Binary file (4.06 kB)
 
models/LLaVA/llava/constants.py DELETED
@@ -1,13 +0,0 @@
1
- CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
- WORKER_HEART_BEAT_INTERVAL = 15
3
-
4
- LOGDIR = "."
5
-
6
- # Model Constants
7
- IGNORE_INDEX = -100
8
- IMAGE_TOKEN_INDEX = -200
9
- DEFAULT_IMAGE_TOKEN = "<image>"
10
- DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
11
- DEFAULT_IM_START_TOKEN = "<im_start>"
12
- DEFAULT_IM_END_TOKEN = "<im_end>"
13
- IMAGE_PLACEHOLDER = "<image-placeholder>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/conversation.py DELETED
@@ -1,381 +0,0 @@
1
- import dataclasses
2
- from enum import auto, Enum
3
- from typing import List, Tuple
4
-
5
-
6
- class SeparatorStyle(Enum):
7
- """Different separator style."""
8
- SINGLE = auto()
9
- TWO = auto()
10
- MPT = auto()
11
- PLAIN = auto()
12
- LLAMA_2 = auto()
13
-
14
-
15
- @dataclasses.dataclass
16
- class Conversation:
17
- """A class that keeps all conversation history."""
18
- system: str
19
- roles: List[str]
20
- messages: List[List[str]]
21
- offset: int
22
- sep_style: SeparatorStyle = SeparatorStyle.SINGLE
23
- sep: str = "###"
24
- sep2: str = None
25
- version: str = "Unknown"
26
-
27
- skip_next: bool = False
28
-
29
- def get_prompt(self):
30
- messages = self.messages
31
- if len(messages) > 0 and type(messages[0][1]) is tuple:
32
- messages = self.messages.copy()
33
- init_role, init_msg = messages[0].copy()
34
- init_msg = init_msg[0].replace("<image>", "").strip()
35
- if 'mmtag' in self.version:
36
- messages[0] = (init_role, init_msg)
37
- messages.insert(0, (self.roles[0], "<Image><image></Image>"))
38
- messages.insert(1, (self.roles[1], "Received."))
39
- else:
40
- messages[0] = (init_role, "<image>\n" + init_msg)
41
-
42
- if self.sep_style == SeparatorStyle.SINGLE:
43
- ret = self.system + self.sep
44
- for role, message in messages:
45
- if message:
46
- if type(message) is tuple:
47
- message, _, _ = message
48
- ret += role + ": " + message + self.sep
49
- else:
50
- ret += role + ":"
51
- elif self.sep_style == SeparatorStyle.TWO:
52
- seps = [self.sep, self.sep2]
53
- ret = self.system + seps[0]
54
- for i, (role, message) in enumerate(messages):
55
- if message:
56
- if type(message) is tuple:
57
- message, _, _ = message
58
- ret += role + ": " + message + seps[i % 2]
59
- else:
60
- ret += role + ":"
61
- elif self.sep_style == SeparatorStyle.MPT:
62
- ret = self.system + self.sep
63
- for role, message in messages:
64
- if message:
65
- if type(message) is tuple:
66
- message, _, _ = message
67
- ret += role + message + self.sep
68
- else:
69
- ret += role
70
- elif self.sep_style == SeparatorStyle.LLAMA_2:
71
- wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
72
- wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
73
- ret = ""
74
-
75
- for i, (role, message) in enumerate(messages):
76
- if i == 0:
77
- assert message, "first message should not be none"
78
- assert role == self.roles[0], "first message should come from user"
79
- if message:
80
- if type(message) is tuple:
81
- message, _, _ = message
82
- if i == 0: message = wrap_sys(self.system) + message
83
- if i % 2 == 0:
84
- message = wrap_inst(message)
85
- ret += self.sep + message
86
- else:
87
- ret += " " + message + " " + self.sep2
88
- else:
89
- ret += ""
90
- ret = ret.lstrip(self.sep)
91
- elif self.sep_style == SeparatorStyle.PLAIN:
92
- seps = [self.sep, self.sep2]
93
- ret = self.system
94
- for i, (role, message) in enumerate(messages):
95
- if message:
96
- if type(message) is tuple:
97
- message, _, _ = message
98
- ret += message + seps[i % 2]
99
- else:
100
- ret += ""
101
- else:
102
- raise ValueError(f"Invalid style: {self.sep_style}")
103
-
104
- return ret
105
-
106
- def append_message(self, role, message):
107
- self.messages.append([role, message])
108
-
109
- def get_images(self, return_pil=False):
110
- images = []
111
- for i, (role, msg) in enumerate(self.messages[self.offset:]):
112
- if i % 2 == 0:
113
- if type(msg) is tuple:
114
- import base64
115
- from io import BytesIO
116
- from PIL import Image
117
- msg, image, image_process_mode = msg
118
- if image_process_mode == "Pad":
119
- def expand2square(pil_img, background_color=(122, 116, 104)):
120
- width, height = pil_img.size
121
- if width == height:
122
- return pil_img
123
- elif width > height:
124
- result = Image.new(pil_img.mode, (width, width), background_color)
125
- result.paste(pil_img, (0, (width - height) // 2))
126
- return result
127
- else:
128
- result = Image.new(pil_img.mode, (height, height), background_color)
129
- result.paste(pil_img, ((height - width) // 2, 0))
130
- return result
131
- image = expand2square(image)
132
- elif image_process_mode in ["Default", "Crop"]:
133
- pass
134
- elif image_process_mode == "Resize":
135
- image = image.resize((336, 336))
136
- else:
137
- raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
138
- max_hw, min_hw = max(image.size), min(image.size)
139
- aspect_ratio = max_hw / min_hw
140
- max_len, min_len = 800, 400
141
- shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
142
- longest_edge = int(shortest_edge * aspect_ratio)
143
- W, H = image.size
144
- if longest_edge != max(image.size):
145
- if H > W:
146
- H, W = longest_edge, shortest_edge
147
- else:
148
- H, W = shortest_edge, longest_edge
149
- image = image.resize((W, H))
150
- if return_pil:
151
- images.append(image)
152
- else:
153
- buffered = BytesIO()
154
- image.save(buffered, format="PNG")
155
- img_b64_str = base64.b64encode(buffered.getvalue()).decode()
156
- images.append(img_b64_str)
157
- return images
158
-
159
- def to_gradio_chatbot(self):
160
- ret = []
161
- for i, (role, msg) in enumerate(self.messages[self.offset:]):
162
- if i % 2 == 0:
163
- if type(msg) is tuple:
164
- import base64
165
- from io import BytesIO
166
- msg, image, image_process_mode = msg
167
- max_hw, min_hw = max(image.size), min(image.size)
168
- aspect_ratio = max_hw / min_hw
169
- max_len, min_len = 800, 400
170
- shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
171
- longest_edge = int(shortest_edge * aspect_ratio)
172
- W, H = image.size
173
- if H > W:
174
- H, W = longest_edge, shortest_edge
175
- else:
176
- H, W = shortest_edge, longest_edge
177
- image = image.resize((W, H))
178
- buffered = BytesIO()
179
- image.save(buffered, format="JPEG")
180
- img_b64_str = base64.b64encode(buffered.getvalue()).decode()
181
- img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
182
- msg = img_str + msg.replace('<image>', '').strip()
183
- ret.append([msg, None])
184
- else:
185
- ret.append([msg, None])
186
- else:
187
- ret[-1][-1] = msg
188
- return ret
189
-
190
- def copy(self):
191
- return Conversation(
192
- system=self.system,
193
- roles=self.roles,
194
- messages=[[x, y] for x, y in self.messages],
195
- offset=self.offset,
196
- sep_style=self.sep_style,
197
- sep=self.sep,
198
- sep2=self.sep2,
199
- version=self.version)
200
-
201
- def dict(self):
202
- if len(self.get_images()) > 0:
203
- return {
204
- "system": self.system,
205
- "roles": self.roles,
206
- "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
207
- "offset": self.offset,
208
- "sep": self.sep,
209
- "sep2": self.sep2,
210
- }
211
- return {
212
- "system": self.system,
213
- "roles": self.roles,
214
- "messages": self.messages,
215
- "offset": self.offset,
216
- "sep": self.sep,
217
- "sep2": self.sep2,
218
- }
219
-
220
-
221
- conv_vicuna_v0 = Conversation(
222
- system="A chat between a curious human and an artificial intelligence assistant. "
223
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
224
- roles=("Human", "Assistant"),
225
- messages=(
226
- ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
227
- ("Assistant",
228
- "Renewable energy sources are those that can be replenished naturally in a relatively "
229
- "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
230
- "Non-renewable energy sources, on the other hand, are finite and will eventually be "
231
- "depleted, such as coal, oil, and natural gas. Here are some key differences between "
232
- "renewable and non-renewable energy sources:\n"
233
- "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
234
- "energy sources are finite and will eventually run out.\n"
235
- "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
236
- "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
237
- "and other negative effects.\n"
238
- "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
239
- "have lower operational costs than non-renewable sources.\n"
240
- "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
241
- "locations than non-renewable sources.\n"
242
- "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
243
- "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
244
- "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
245
- "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
246
- ),
247
- offset=2,
248
- sep_style=SeparatorStyle.SINGLE,
249
- sep="###",
250
- )
251
-
252
- conv_vicuna_v1 = Conversation(
253
- system="A chat between a curious user and an artificial intelligence assistant. "
254
- "The assistant gives helpful, detailed, and polite answers to the user's questions.",
255
- roles=("USER", "ASSISTANT"),
256
- version="v1",
257
- messages=(),
258
- offset=0,
259
- sep_style=SeparatorStyle.TWO,
260
- sep=" ",
261
- sep2="</s>",
262
- )
263
-
264
- conv_llama_2 = Conversation(
265
- system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
266
-
267
- If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
268
- roles=("USER", "ASSISTANT"),
269
- version="llama_v2",
270
- messages=(),
271
- offset=0,
272
- sep_style=SeparatorStyle.LLAMA_2,
273
- sep="<s>",
274
- sep2="</s>",
275
- )
276
-
277
- conv_llava_llama_2 = Conversation(
278
- system="You are a helpful language and vision assistant. "
279
- "You are able to understand the visual content that the user provides, "
280
- "and assist the user with a variety of tasks using natural language.",
281
- roles=("USER", "ASSISTANT"),
282
- version="llama_v2",
283
- messages=(),
284
- offset=0,
285
- sep_style=SeparatorStyle.LLAMA_2,
286
- sep="<s>",
287
- sep2="</s>",
288
- )
289
-
290
- conv_mpt = Conversation(
291
- system="""<|im_start|>system
292
- A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
293
- roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
294
- version="mpt",
295
- messages=(),
296
- offset=0,
297
- sep_style=SeparatorStyle.MPT,
298
- sep="<|im_end|>",
299
- )
300
-
301
- conv_llava_plain = Conversation(
302
- system="",
303
- roles=("", ""),
304
- messages=(
305
- ),
306
- offset=0,
307
- sep_style=SeparatorStyle.PLAIN,
308
- sep="\n",
309
- )
310
-
311
- conv_llava_v0 = Conversation(
312
- system="A chat between a curious human and an artificial intelligence assistant. "
313
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
314
- roles=("Human", "Assistant"),
315
- messages=(
316
- ),
317
- offset=0,
318
- sep_style=SeparatorStyle.SINGLE,
319
- sep="###",
320
- )
321
-
322
- conv_llava_v0_mmtag = Conversation(
323
- system="A chat between a curious user and an artificial intelligence assistant. "
324
- "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
325
- "The visual content will be provided with the following format: <Image>visual content</Image>.",
326
- roles=("Human", "Assistant"),
327
- messages=(
328
- ),
329
- offset=0,
330
- sep_style=SeparatorStyle.SINGLE,
331
- sep="###",
332
- version="v0_mmtag",
333
- )
334
-
335
- conv_llava_v1 = Conversation(
336
- system="A chat between a curious human and an artificial intelligence assistant. "
337
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
338
- roles=("USER", "ASSISTANT"),
339
- version="v1",
340
- messages=(),
341
- offset=0,
342
- sep_style=SeparatorStyle.TWO,
343
- sep=" ",
344
- sep2="</s>",
345
- )
346
-
347
- conv_llava_v1_mmtag = Conversation(
348
- system="A chat between a curious user and an artificial intelligence assistant. "
349
- "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
350
- "The visual content will be provided with the following format: <Image>visual content</Image>.",
351
- roles=("USER", "ASSISTANT"),
352
- messages=(),
353
- offset=0,
354
- sep_style=SeparatorStyle.TWO,
355
- sep=" ",
356
- sep2="</s>",
357
- version="v1_mmtag",
358
- )
359
-
360
- default_conversation = conv_vicuna_v1
361
- conv_templates = {
362
- "default": conv_vicuna_v0,
363
- "v0": conv_vicuna_v0,
364
- "v1": conv_vicuna_v1,
365
- "vicuna_v1": conv_vicuna_v1,
366
- "llama_2": conv_llama_2,
367
-
368
- "plain": conv_llava_plain,
369
- "v0_plain": conv_llava_plain,
370
- "llava_v0": conv_llava_v0,
371
- "v0_mmtag": conv_llava_v0_mmtag,
372
- "llava_v1": conv_llava_v1,
373
- "v1_mmtag": conv_llava_v1_mmtag,
374
- "llava_llama_2": conv_llava_llama_2,
375
-
376
- "mpt": conv_mpt,
377
- }
378
-
379
-
380
- if __name__ == "__main__":
381
- print(default_conversation.get_prompt())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/__pycache__/run_llava.cpython-310.pyc DELETED
Binary file (3.88 kB)
 
models/LLaVA/llava/eval/__pycache__/run_llava.cpython-38.pyc DELETED
Binary file (3.94 kB)
 
models/LLaVA/llava/eval/eval_gpt_review.py DELETED
@@ -1,113 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
-
5
- import openai
6
- import tqdm
7
- import ray
8
- import time
9
-
10
- NUM_SECONDS_TO_SLEEP = 3
11
-
12
- @ray.remote(num_cpus=4)
13
- def get_eval(content: str, max_tokens: int):
14
- while True:
15
- try:
16
- response = openai.ChatCompletion.create(
17
- model='gpt-4',
18
- messages=[{
19
- 'role': 'system',
20
- 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
21
- }, {
22
- 'role': 'user',
23
- 'content': content,
24
- }],
25
- temperature=0.2, # TODO: figure out which temperature is best for evaluation
26
- max_tokens=max_tokens,
27
- )
28
- break
29
- except openai.error.RateLimitError:
30
- pass
31
- except Exception as e:
32
- print(e)
33
- time.sleep(NUM_SECONDS_TO_SLEEP)
34
-
35
- print('success!')
36
- return response['choices'][0]['message']['content']
37
-
38
-
39
- def parse_score(review):
40
- try:
41
- score_pair = review.split('\n')[0]
42
- score_pair = score_pair.replace(',', ' ')
43
- sp = score_pair.split(' ')
44
- if len(sp) == 2:
45
- return [float(sp[0]), float(sp[1])]
46
- else:
47
- print('error', review)
48
- return [-1, -1]
49
- except Exception as e:
50
- print(e)
51
- print('error', review)
52
- return [-1, -1]
53
-
54
-
55
- if __name__ == '__main__':
56
- parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
57
- parser.add_argument('-q', '--question')
58
- # parser.add_argument('-a', '--answer')
59
- parser.add_argument('-a', '--answer-list', nargs='+', default=[])
60
- parser.add_argument('-r', '--rule')
61
- parser.add_argument('-o', '--output')
62
- parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
63
- args = parser.parse_args()
64
-
65
- ray.init()
66
-
67
- f_q = open(os.path.expanduser(args.question))
68
- f_ans1 = open(os.path.expanduser(args.answer_list[0]))
69
- f_ans2 = open(os.path.expanduser(args.answer_list[1]))
70
- rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
71
-
72
- review_file = open(f'{args.output}', 'w')
73
-
74
- js_list = []
75
- handles = []
76
- idx = 0
77
- for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
78
- # if idx == 1:
79
- # break
80
-
81
- ques = json.loads(ques_js)
82
- ans1 = json.loads(ans1_js)
83
- ans2 = json.loads(ans2_js)
84
-
85
- category = json.loads(ques_js)['category']
86
- if category in rule_dict:
87
- rule = rule_dict[category]
88
- else:
89
- rule = rule_dict['default']
90
- prompt = rule['prompt']
91
- role = rule['role']
92
- content = (f'[Question]\n{ques["text"]}\n\n'
93
- f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
94
- f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
95
- f'[System]\n{prompt}\n\n')
96
- js_list.append({
97
- 'id': idx+1,
98
- 'question_id': ques['question_id'],
99
- 'answer1_id': ans1['answer_id'],
100
- 'answer2_id': ans2['answer_id'],
101
- 'category': category})
102
- idx += 1
103
- handles.append(get_eval.remote(content, args.max_tokens))
104
- # To avoid the rate limit set by OpenAI
105
- time.sleep(NUM_SECONDS_TO_SLEEP)
106
-
107
- reviews = ray.get(handles)
108
- for idx, review in enumerate(reviews):
109
- scores = parse_score(review)
110
- js_list[idx]['content'] = review
111
- js_list[idx]['tuple'] = scores
112
- review_file.write(json.dumps(js_list[idx]) + '\n')
113
- review_file.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_gpt_review_bench.py DELETED
@@ -1,121 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
-
5
- import openai
6
- import time
7
-
8
- NUM_SECONDS_TO_SLEEP = 0.5
9
-
10
-
11
- def get_eval(content: str, max_tokens: int):
12
- while True:
13
- try:
14
- response = openai.ChatCompletion.create(
15
- model='gpt-4-0314',
16
- messages=[{
17
- 'role': 'system',
18
- 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
19
- }, {
20
- 'role': 'user',
21
- 'content': content,
22
- }],
23
- temperature=0.2, # TODO: figure out which temperature is best for evaluation
24
- max_tokens=max_tokens,
25
- )
26
- break
27
- except openai.error.RateLimitError:
28
- pass
29
- except Exception as e:
30
- print(e)
31
- time.sleep(NUM_SECONDS_TO_SLEEP)
32
-
33
- return response['choices'][0]['message']['content']
34
-
35
-
36
- def parse_score(review):
37
- try:
38
- score_pair = review.split('\n')[0]
39
- score_pair = score_pair.replace(',', ' ')
40
- sp = score_pair.split(' ')
41
- if len(sp) == 2:
42
- return [float(sp[0]), float(sp[1])]
43
- else:
44
- print('error', review)
45
- return [-1, -1]
46
- except Exception as e:
47
- print(e)
48
- print('error', review)
49
- return [-1, -1]
50
-
51
-
52
- if __name__ == '__main__':
53
- parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
54
- parser.add_argument('-q', '--question')
55
- parser.add_argument('-c', '--context')
56
- parser.add_argument('-a', '--answer-list', nargs='+', default=[])
57
- parser.add_argument('-r', '--rule')
58
- parser.add_argument('-o', '--output')
59
- parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
60
- args = parser.parse_args()
61
-
62
- f_q = open(os.path.expanduser(args.question))
63
- f_ans1 = open(os.path.expanduser(args.answer_list[0]))
64
- f_ans2 = open(os.path.expanduser(args.answer_list[1]))
65
- rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
66
-
67
- if os.path.isfile(os.path.expanduser(args.output)):
68
- cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
69
- else:
70
- cur_reviews = []
71
-
72
- review_file = open(f'{args.output}', 'a')
73
-
74
- context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
75
- image_to_context = {context['image']: context for context in context_list}
76
-
77
- handles = []
78
- idx = 0
79
- for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
80
- ques = json.loads(ques_js)
81
- ans1 = json.loads(ans1_js)
82
- ans2 = json.loads(ans2_js)
83
-
84
- inst = image_to_context[ques['image']]
85
-
86
- if isinstance(inst['caption'], list):
87
- cap_str = '\n'.join(inst['caption'])
88
- else:
89
- cap_str = inst['caption']
90
-
91
- category = 'llava_bench_' + json.loads(ques_js)['category']
92
- if category in rule_dict:
93
- rule = rule_dict[category]
94
- else:
95
- assert False, f"Visual QA category not found in rule file: {category}."
96
- prompt = rule['prompt']
97
- role = rule['role']
98
- content = (f'[Context]\n{cap_str}\n\n'
99
- f'[Question]\n{ques["text"]}\n\n'
100
- f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
101
- f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
102
- f'[System]\n{prompt}\n\n')
103
- cur_js = {
104
- 'id': idx+1,
105
- 'question_id': ques['question_id'],
106
- 'answer1_id': ans1.get('answer_id', ans1['question_id']),
107
- 'answer2_id': ans2.get('answer_id', ans2['answer_id']),
108
- 'category': category
109
- }
110
- if idx >= len(cur_reviews):
111
- review = get_eval(content, args.max_tokens)
112
- scores = parse_score(review)
113
- cur_js['content'] = review
114
- cur_js['tuple'] = scores
115
- review_file.write(json.dumps(cur_js) + '\n')
116
- review_file.flush()
117
- else:
118
- print(f'Skipping {idx} as we already have it.')
119
- idx += 1
120
- print(idx)
121
- review_file.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_gpt_review_visual.py DELETED
@@ -1,118 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
-
5
- import openai
6
- import time
7
-
8
- NUM_SECONDS_TO_SLEEP = 0.5
9
-
10
-
11
- def get_eval(content: str, max_tokens: int):
12
- while True:
13
- try:
14
- response = openai.ChatCompletion.create(
15
- model='gpt-4-0314',
16
- messages=[{
17
- 'role': 'system',
18
- 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
19
- }, {
20
- 'role': 'user',
21
- 'content': content,
22
- }],
23
- temperature=0.2, # TODO: figure out which temperature is best for evaluation
24
- max_tokens=max_tokens,
25
- )
26
- break
27
- except openai.error.RateLimitError:
28
- pass
29
- except Exception as e:
30
- print(e)
31
- time.sleep(NUM_SECONDS_TO_SLEEP)
32
-
33
- return response['choices'][0]['message']['content']
34
-
35
-
36
- def parse_score(review):
37
- try:
38
- score_pair = review.split('\n')[0]
39
- score_pair = score_pair.replace(',', ' ')
40
- sp = score_pair.split(' ')
41
- if len(sp) == 2:
42
- return [float(sp[0]), float(sp[1])]
43
- else:
44
- print('error', review)
45
- return [-1, -1]
46
- except Exception as e:
47
- print(e)
48
- print('error', review)
49
- return [-1, -1]
50
-
51
-
52
- if __name__ == '__main__':
53
- parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
54
- parser.add_argument('-q', '--question')
55
- parser.add_argument('-c', '--context')
56
- parser.add_argument('-a', '--answer-list', nargs='+', default=[])
57
- parser.add_argument('-r', '--rule')
58
- parser.add_argument('-o', '--output')
59
- parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
60
- args = parser.parse_args()
61
-
62
- f_q = open(os.path.expanduser(args.question))
63
- f_ans1 = open(os.path.expanduser(args.answer_list[0]))
64
- f_ans2 = open(os.path.expanduser(args.answer_list[1]))
65
- rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
66
-
67
- if os.path.isfile(os.path.expanduser(args.output)):
68
- cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
69
- else:
70
- cur_reviews = []
71
-
72
- review_file = open(f'{args.output}', 'a')
73
-
74
- context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
75
- image_to_context = {context['image']: context for context in context_list}
76
-
77
- handles = []
78
- idx = 0
79
- for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
80
- ques = json.loads(ques_js)
81
- ans1 = json.loads(ans1_js)
82
- ans2 = json.loads(ans2_js)
83
-
84
- inst = image_to_context[ques['image']]
85
- cap_str = '\n'.join(inst['captions'])
86
- box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']])
87
-
88
- category = json.loads(ques_js)['category']
89
- if category in rule_dict:
90
- rule = rule_dict[category]
91
- else:
92
- assert False, f"Visual QA category not found in rule file: {category}."
93
- prompt = rule['prompt']
94
- role = rule['role']
95
- content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n'
96
- f'[Question]\n{ques["text"]}\n\n'
97
- f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
98
- f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
99
- f'[System]\n{prompt}\n\n')
100
- cur_js = {
101
- 'id': idx+1,
102
- 'question_id': ques['question_id'],
103
- 'answer1_id': ans1.get('answer_id', ans1['question_id']),
104
- 'answer2_id': ans2.get('answer_id', ans2['answer_id']),
105
- 'category': category
106
- }
107
- if idx >= len(cur_reviews):
108
- review = get_eval(content, args.max_tokens)
109
- scores = parse_score(review)
110
- cur_js['content'] = review
111
- cur_js['tuple'] = scores
112
- review_file.write(json.dumps(cur_js) + '\n')
113
- review_file.flush()
114
- else:
115
- print(f'Skipping {idx} as we already have it.')
116
- idx += 1
117
- print(idx)
118
- review_file.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_pope.py DELETED
@@ -1,81 +0,0 @@
1
- import os
2
- import json
3
- import argparse
4
-
5
- def eval_pope(answers, label_file):
6
- label_list = [json.loads(q)['label'] for q in open(label_file, 'r')]
7
-
8
- for answer in answers:
9
- text = answer['text']
10
-
11
- # Only keep the first sentence
12
- if text.find('.') != -1:
13
- text = text.split('.')[0]
14
-
15
- text = text.replace(',', '')
16
- words = text.split(' ')
17
- if 'No' in words or 'not' in words or 'no' in words:
18
- answer['text'] = 'no'
19
- else:
20
- answer['text'] = 'yes'
21
-
22
- for i in range(len(label_list)):
23
- if label_list[i] == 'no':
24
- label_list[i] = 0
25
- else:
26
- label_list[i] = 1
27
-
28
- pred_list = []
29
- for answer in answers:
30
- if answer['text'] == 'no':
31
- pred_list.append(0)
32
- else:
33
- pred_list.append(1)
34
-
35
- pos = 1
36
- neg = 0
37
- yes_ratio = pred_list.count(1) / len(pred_list)
38
-
39
- TP, TN, FP, FN = 0, 0, 0, 0
40
- for pred, label in zip(pred_list, label_list):
41
- if pred == pos and label == pos:
42
- TP += 1
43
- elif pred == pos and label == neg:
44
- FP += 1
45
- elif pred == neg and label == neg:
46
- TN += 1
47
- elif pred == neg and label == pos:
48
- FN += 1
49
-
50
- print('TP\tFP\tTN\tFN\t')
51
- print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
52
-
53
- precision = float(TP) / float(TP + FP)
54
- recall = float(TP) / float(TP + FN)
55
- f1 = 2*precision*recall / (precision + recall)
56
- acc = (TP + TN) / (TP + TN + FP + FN)
57
- print('Accuracy: {}'.format(acc))
58
- print('Precision: {}'.format(precision))
59
- print('Recall: {}'.format(recall))
60
- print('F1 score: {}'.format(f1))
61
- print('Yes ratio: {}'.format(yes_ratio))
62
- print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) )
63
-
64
- if __name__ == "__main__":
65
- parser = argparse.ArgumentParser()
66
- parser.add_argument("--annotation-dir", type=str)
67
- parser.add_argument("--question-file", type=str)
68
- parser.add_argument("--result-file", type=str)
69
- args = parser.parse_args()
70
-
71
- questions = [json.loads(line) for line in open(args.question_file)]
72
- questions = {question['question_id']: question for question in questions}
73
- answers = [json.loads(q) for q in open(args.result_file)]
74
- for file in os.listdir(args.annotation_dir):
75
- assert file.startswith('coco_pope_')
76
- assert file.endswith('.json')
77
- category = file[10:-5]
78
- cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category]
79
- print('Category: {}, # samples: {}'.format(category, len(cur_answers)))
80
- eval_pope(cur_answers, os.path.join(args.annotation_dir, file))
81
- print("====================================")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_science_qa.py DELETED
@@ -1,114 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
- import re
5
- import random
6
-
7
-
8
- def get_args():
9
- parser = argparse.ArgumentParser()
10
- parser.add_argument('--base-dir', type=str)
11
- parser.add_argument('--result-file', type=str)
12
- parser.add_argument('--output-file', type=str)
13
- parser.add_argument('--output-result', type=str)
14
- parser.add_argument('--split', type=str, default='test')
15
- parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
16
- return parser.parse_args()
17
-
18
-
19
- def convert_caps(results):
20
- fakecaps = []
21
- for result in results:
22
- image_id = result['question_id']
23
- caption = result['text']
24
- fakecaps.append({"image_id": int(image_id), "caption": caption})
25
- return fakecaps
26
-
27
-
28
- def get_pred_idx(prediction, choices, options):
29
- """
30
- Get the index (e.g. 2) from the prediction (e.g. 'C')
31
- """
32
- if prediction in options[:len(choices)]:
33
- return options.index(prediction)
34
- else:
35
- return -1
36
- return random.choice(range(len(choices)))
37
-
38
-
39
- if __name__ == "__main__":
40
- args = get_args()
41
-
42
- base_dir = args.base_dir
43
- split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
44
- problems = json.load(open(os.path.join(base_dir, "problems.json")))
45
- predictions = [json.loads(line) for line in open(args.result_file)]
46
- predictions = {pred['question_id']: pred for pred in predictions}
47
- split_problems = {idx: problems[idx] for idx in split_indices}
48
-
49
- results = {'correct': [], 'incorrect': []}
50
- sqa_results = {}
51
- sqa_results['acc'] = None
52
- sqa_results['correct'] = None
53
- sqa_results['count'] = None
54
- sqa_results['results'] = {}
55
- sqa_results['outputs'] = {}
56
-
57
- for prob_id, prob in split_problems.items():
58
- if prob_id not in predictions:
59
- pred = {'text': 'FAILED', 'prompt': 'Unknown'}
60
- pred_text = 'FAILED'
61
- else:
62
- pred = predictions[prob_id]
63
- pred_text = pred['text']
64
-
65
- if pred_text in args.options:
66
- answer = pred_text
67
- elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ":
68
- answer = pred_text[0]
69
- else:
70
- pattern = re.compile(r'The answer is ([A-Z]).')
71
- res = pattern.findall(pred_text)
72
- if len(res) == 1:
73
- answer = res[0] # 'A', 'B', ...
74
- else:
75
- answer = "FAILED"
76
-
77
- pred_idx = get_pred_idx(answer, prob['choices'], args.options)
78
-
79
- analysis = {
80
- 'question_id': prob_id,
81
- 'parsed_ans': answer,
82
- 'ground_truth': args.options[prob['answer']],
83
- 'question': pred['prompt'],
84
- 'pred': pred_text,
85
- 'is_multimodal': '<image>' in pred['prompt'],
86
- }
87
-
88
- sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
89
- sqa_results['outputs'][prob_id] = pred_text
90
-
91
- if pred_idx == prob['answer']:
92
- results['correct'].append(analysis)
93
- else:
94
- results['incorrect'].append(analysis)
95
-
96
- correct = len(results['correct'])
97
- total = len(results['correct']) + len(results['incorrect'])
98
-
99
- ###### IMG ######
100
- multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']])
101
- multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']])
102
- multimodal_total = multimodal_correct + multimodal_incorrect
103
- ###### IMG ######
104
-
105
- print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%')
106
-
107
- sqa_results['acc'] = correct / total * 100
108
- sqa_results['correct'] = correct
109
- sqa_results['count'] = total
110
-
111
- with open(args.output_file, 'w') as f:
112
- json.dump(results, f, indent=2)
113
- with open(args.output_result, 'w') as f:
114
- json.dump(sqa_results, f, indent=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_science_qa_gpt4.py DELETED
@@ -1,104 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
- import re
5
- import random
6
- from collections import defaultdict
7
-
8
-
9
- def get_args():
10
- parser = argparse.ArgumentParser()
11
- parser.add_argument('--base-dir', type=str)
12
- parser.add_argument('--gpt4-result', type=str)
13
- parser.add_argument('--our-result', type=str)
14
- parser.add_argument('--split', type=str, default='test')
15
- parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
16
- return parser.parse_args()
17
-
18
-
19
- def convert_caps(results):
20
- fakecaps = []
21
- for result in results:
22
- image_id = result['question_id']
23
- caption = result['text']
24
- fakecaps.append({"image_id": int(image_id), "caption": caption})
25
- return fakecaps
26
-
27
-
28
- def get_pred_idx(prediction, choices, options):
29
- """
30
- Get the index (e.g. 2) from the prediction (e.g. 'C')
31
- """
32
- if prediction in options[:len(choices)]:
33
- return options.index(prediction)
34
- else:
35
- return random.choice(range(len(choices)))
36
-
37
-
38
- if __name__ == "__main__":
39
- args = get_args()
40
-
41
- base_dir = args.base_dir
42
- split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
43
- problems = json.load(open(os.path.join(base_dir, "problems.json")))
44
- our_predictions = [json.loads(line) for line in open(args.our_result)]
45
- our_predictions = {pred['question_id']: pred for pred in our_predictions}
46
- split_problems = {idx: problems[idx] for idx in split_indices}
47
-
48
- gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
49
-
50
- results = defaultdict(lambda: 0)
51
-
52
- for prob_id, prob in split_problems.items():
53
- if prob_id not in our_predictions:
54
- continue
55
- if prob_id not in gpt4_predictions:
56
- continue
57
- our_pred = our_predictions[prob_id]['text']
58
- gpt4_pred = gpt4_predictions[prob_id]
59
-
60
- pattern = re.compile(r'The answer is ([A-Z]).')
61
- our_res = pattern.findall(our_pred)
62
- if len(our_res) == 1:
63
- our_answer = our_res[0] # 'A', 'B', ...
64
- else:
65
- our_answer = "FAILED"
66
- gpt4_res = pattern.findall(gpt4_pred)
67
- if len(gpt4_res) == 1:
68
- gpt4_answer = gpt4_res[0] # 'A', 'B', ...
69
- else:
70
- gpt4_answer = "FAILED"
71
-
72
- our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
73
- gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
74
-
75
- if gpt4_answer == 'FAILED':
76
- results['gpt4_failed'] += 1
77
- # continue
78
- gpt4_pred_idx = our_pred_idx
79
- # if our_pred_idx != prob['answer']:
80
- # print(our_predictions[prob_id]['prompt'])
81
- # print('-----------------')
82
- # print(f'LECTURE: {prob["lecture"]}')
83
- # print(f'SOLUTION: {prob["solution"]}')
84
- # print('=====================')
85
- else:
86
- # continue
87
- pass
88
- # gpt4_pred_idx = our_pred_idx
89
-
90
- if gpt4_pred_idx == prob['answer']:
91
- results['correct'] += 1
92
- else:
93
- results['incorrect'] += 1
94
-
95
-
96
- if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
97
- results['correct_upperbound'] += 1
98
-
99
- correct = results['correct']
100
- total = results['correct'] + results['incorrect']
101
- print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
102
- print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
103
- print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
104
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_science_qa_gpt4_requery.py DELETED
@@ -1,149 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
- import re
5
- import random
6
- from collections import defaultdict
7
-
8
-
9
- def get_args():
10
- parser = argparse.ArgumentParser()
11
- parser.add_argument('--base-dir', type=str)
12
- parser.add_argument('--gpt4-result', type=str)
13
- parser.add_argument('--requery-result', type=str)
14
- parser.add_argument('--our-result', type=str)
15
- parser.add_argument('--output-result', type=str)
16
- parser.add_argument('--split', type=str, default='test')
17
- parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
18
- return parser.parse_args()
19
-
20
-
21
- def convert_caps(results):
22
- fakecaps = []
23
- for result in results:
24
- image_id = result['question_id']
25
- caption = result['text']
26
- fakecaps.append({"image_id": int(image_id), "caption": caption})
27
- return fakecaps
28
-
29
-
30
- def get_pred_idx(prediction, choices, options):
31
- """
32
- Get the index (e.g. 2) from the prediction (e.g. 'C')
33
- """
34
- if prediction in options[:len(choices)]:
35
- return options.index(prediction)
36
- else:
37
- return random.choice(range(len(choices)))
38
-
39
-
40
- if __name__ == "__main__":
41
- args = get_args()
42
-
43
- base_dir = args.base_dir
44
- split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
45
- problems = json.load(open(os.path.join(base_dir, "problems.json")))
46
- our_predictions = [json.loads(line) for line in open(args.our_result)]
47
- our_predictions = {pred['question_id']: pred for pred in our_predictions}
48
- split_problems = {idx: problems[idx] for idx in split_indices}
49
-
50
- requery_predictions = [json.loads(line) for line in open(args.requery_result)]
51
- requery_predictions = {pred['question_id']: pred for pred in requery_predictions}
52
-
53
- gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
54
-
55
- results = defaultdict(lambda: 0)
56
-
57
- sqa_results = {}
58
- sqa_results['acc'] = None
59
- sqa_results['correct'] = None
60
- sqa_results['count'] = None
61
- sqa_results['results'] = {}
62
- sqa_results['outputs'] = {}
63
-
64
- for prob_id, prob in split_problems.items():
65
- if prob_id not in our_predictions:
66
- assert False
67
- if prob_id not in gpt4_predictions:
68
- assert False
69
- our_pred = our_predictions[prob_id]['text']
70
- gpt4_pred = gpt4_predictions[prob_id]
71
- if prob_id not in requery_predictions:
72
- results['missing_requery'] += 1
73
- requery_pred = "MISSING"
74
- else:
75
- requery_pred = requery_predictions[prob_id]['text']
76
-
77
- pattern = re.compile(r'The answer is ([A-Z]).')
78
- our_res = pattern.findall(our_pred)
79
- if len(our_res) == 1:
80
- our_answer = our_res[0] # 'A', 'B', ...
81
- else:
82
- our_answer = "FAILED"
83
-
84
- requery_res = pattern.findall(requery_pred)
85
- if len(requery_res) == 1:
86
- requery_answer = requery_res[0] # 'A', 'B', ...
87
- else:
88
- requery_answer = "FAILED"
89
-
90
- gpt4_res = pattern.findall(gpt4_pred)
91
- if len(gpt4_res) == 1:
92
- gpt4_answer = gpt4_res[0] # 'A', 'B', ...
93
- else:
94
- gpt4_answer = "FAILED"
95
-
96
- our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
97
- gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
98
- requery_pred_idx = get_pred_idx(requery_answer, prob['choices'], args.options)
99
-
100
- results['total'] += 1
101
-
102
- if gpt4_answer == 'FAILED':
103
- results['gpt4_failed'] += 1
104
- if gpt4_pred_idx == prob['answer']:
105
- results['gpt4_correct'] += 1
106
- if our_pred_idx == prob['answer']:
107
- results['gpt4_ourvisual_correct'] += 1
108
- elif gpt4_pred_idx == prob['answer']:
109
- results['gpt4_correct'] += 1
110
- results['gpt4_ourvisual_correct'] += 1
111
-
112
- if our_pred_idx == prob['answer']:
113
- results['our_correct'] += 1
114
-
115
- if requery_answer == 'FAILED':
116
- sqa_results['results'][prob_id] = our_pred_idx
117
- if our_pred_idx == prob['answer']:
118
- results['requery_correct'] += 1
119
- else:
120
- sqa_results['results'][prob_id] = requery_pred_idx
121
- if requery_pred_idx == prob['answer']:
122
- results['requery_correct'] += 1
123
- else:
124
- print(f"""
125
- Question ({args.options[prob['answer']]}): {our_predictions[prob_id]['prompt']}
126
- Our ({our_answer}): {our_pred}
127
- GPT-4 ({gpt4_answer}): {gpt4_pred}
128
- Requery ({requery_answer}): {requery_pred}
129
- print("=====================================")
130
- """)
131
-
132
- if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
133
- results['correct_upperbound'] += 1
134
-
135
- total = results['total']
136
- print(f'Total: {total}, Our-Correct: {results["our_correct"]}, Accuracy: {results["our_correct"] / total * 100:.2f}%')
137
- print(f'Total: {total}, GPT-4-Correct: {results["gpt4_correct"]}, Accuracy: {results["gpt4_correct"] / total * 100:.2f}%')
138
- print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
139
- print(f'Total: {total}, GPT-4-OursVisual-Correct: {results["gpt4_ourvisual_correct"]}, Accuracy: {results["gpt4_ourvisual_correct"] / total * 100:.2f}%')
140
- print(f'Total: {total}, Requery-Correct: {results["requery_correct"]}, Accuracy: {results["requery_correct"] / total * 100:.2f}%')
141
- print(f'Total: {total}, Correct upper: {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
142
-
143
- sqa_results['acc'] = results["requery_correct"] / total * 100
144
- sqa_results['correct'] = results["requery_correct"]
145
- sqa_results['count'] = total
146
-
147
- with open(args.output_result, 'w') as f:
148
- json.dump(sqa_results, f, indent=2)
149
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/LLaVA/llava/eval/eval_textvqa.py DELETED
@@ -1,65 +0,0 @@
1
- import os
2
- import argparse
3
- import json
4
- import re
5
-
6
- from llava.eval.m4c_evaluator import TextVQAAccuracyEvaluator
7
-
8
-
9
- def get_args():
10
- parser = argparse.ArgumentParser()
11
- parser.add_argument('--annotation-file', type=str)
12
- parser.add_argument('--result-file', type=str)
13
- parser.add_argument('--result-dir', type=str)
14
- return parser.parse_args()
15
-
16
-
17
- def prompt_processor(prompt):
18
- if prompt.startswith('OCR tokens: '):
19
- pattern = r"Question: (.*?) Short answer:"
20
- match = re.search(pattern, prompt, re.DOTALL)
21
- question = match.group(1)
22
- elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
23
- if prompt.startswith('Reference OCR token:'):
24
- question = prompt.split('\n')[1]
25
- else:
26
- question = prompt.split('\n')[0]
27
- elif len(prompt.split('\n')) == 2:
28
- question = prompt.split('\n')[0]
29
- else:
30
- assert False
31
-
32
- return question.lower()
33
-
34
-
35
- def eval_single(annotation_file, result_file):
36
- experiment_name = os.path.splitext(os.path.basename(result_file))[0]
37
- print(experiment_name)
38
- annotations = json.load(open(annotation_file))['data']
39
- annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations}
40
- results = [json.loads(line) for line in open(result_file)]
41
-
42
- pred_list = []
43
- for result in results:
44
- annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))]
45
- pred_list.append({
46
- "pred_answer": result['text'],
47
- "gt_answers": annotation['answers'],
48
- })
49
-
50
- evaluator = TextVQAAccuracyEvaluator()
51
- print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list)))
52
-
53
-
54
- if __name__ == "__main__":
55
- args = get_args()
56
-
57
- if args.result_file is not None:
58
- eval_single(args.annotation_file, args.result_file)
59
-
60
- if args.result_dir is not None:
61
- for result_file in sorted(os.listdir(args.result_dir)):
62
- if not result_file.endswith('.jsonl'):
63
- print(f'Skipping {result_file}')
64
- continue
65
- eval_single(args.annotation_file, os.path.join(args.result_dir, result_file))