alnaba1 commited on
Commit
d0f416b
·
1 Parent(s): 1e0443d

Fix linters, disable R1702

Browse files
Files changed (2) hide show
  1. DiverseSelector/dissimilarity_based.py +12 -12
  2. tox.ini +2 -0
DiverseSelector/dissimilarity_based.py CHANGED
@@ -109,7 +109,7 @@ class DissimilaritySelection(SelectionBase):
109
  arr_dist_init = self.arr_dist
110
 
111
  elif self.initialization.lower() == "random":
112
- rng = np.random.default_rng(self.random_seed)
113
  starting_idx = rng.choice(np.arange(self.features.shape[0]), 1)
114
  arr_dist_init = self.arr_dist
115
 
@@ -248,13 +248,13 @@ class DissimilaritySelection(SelectionBase):
248
  bins[tuple(point_bin)].append(index)
249
  else:
250
  new_bins = {}
251
- for bin_idx in bins:
252
- axis_min = min(array[bins[bin_idx], i])
253
- axis_max = max(array[bins[bin_idx], i])
254
  cell_length = (axis_max - axis_min) / cells
255
  axis_info = [axis_min, axis_max, cell_length]
256
 
257
- for point_idx in bins[bin_idx]:
258
  point_bin = [num for num in bin_idx]
259
  if array[point_idx][i] == axis_info[0]:
260
  index_bin = 0
@@ -276,12 +276,12 @@ class DissimilaritySelection(SelectionBase):
276
  raise ValueError(f"{grid_method} not a valid method")
277
 
278
  old_len = 0
279
- rng = np.random.default_rng(seed=42)
280
  while len(selected) < n_selected:
281
- for bin_idx in bins:
282
- if len(bins[bin_idx]) > 0:
283
- random_int = rng.integers(low=0, high=len(bins[bin_idx]), size=1)[0]
284
- mol_id = bins[bin_idx].pop(random_int)
285
  selected.append(mol_id)
286
 
287
  if len(selected) == old_len:
@@ -331,8 +331,8 @@ class DissimilaritySelection(SelectionBase):
331
  data_point = self.features[idx]
332
  selected_point = self.features[selected_idx]
333
  distance_sq = 0
334
- for i in range(len(data_point)):
335
- distance_sq += (selected_point[i] - data_point[i]) ** 2
336
  distances.append(np.sqrt(distance_sq))
337
  min_dist = min(distances)
338
  if min_dist > s_max:
 
109
  arr_dist_init = self.arr_dist
110
 
111
  elif self.initialization.lower() == "random":
112
+ rng = np.random.default_rng(seed=self.random_seed)
113
  starting_idx = rng.choice(np.arange(self.features.shape[0]), 1)
114
  arr_dist_init = self.arr_dist
115
 
 
248
  bins[tuple(point_bin)].append(index)
249
  else:
250
  new_bins = {}
251
+ for bin_idx, bin_list in bins.items():
252
+ axis_min = min(array[bin_list, i])
253
+ axis_max = max(array[bin_list, i])
254
  cell_length = (axis_max - axis_min) / cells
255
  axis_info = [axis_min, axis_max, cell_length]
256
 
257
+ for point_idx in bin_list:
258
  point_bin = [num for num in bin_idx]
259
  if array[point_idx][i] == axis_info[0]:
260
  index_bin = 0
 
276
  raise ValueError(f"{grid_method} not a valid method")
277
 
278
  old_len = 0
279
+ rng = np.random.default_rng(seed=self.random_seed)
280
  while len(selected) < n_selected:
281
+ for bin_idx, bin_list in bins.items():
282
+ if len(bin_list) > 0:
283
+ random_int = rng.integers(low=0, high=len(bin_list), size=1)[0]
284
+ mol_id = bin_list.pop(random_int)
285
  selected.append(mol_id)
286
 
287
  if len(selected) == old_len:
 
331
  data_point = self.features[idx]
332
  selected_point = self.features[selected_idx]
333
  distance_sq = 0
334
+ for i, point in enumerate(data_point):
335
+ distance_sq += (selected_point[i] - point) ** 2
336
  distances.append(np.sqrt(distance_sq))
337
  min_dist = min(distances)
338
  if min_dist > s_max:
tox.ini CHANGED
@@ -257,6 +257,8 @@ disable=
257
  I1101,
258
  # R0903: Too few public methods (too-few-public-methods)
259
  R0903,
 
 
260
 
261
  [SIMILARITIES]
262
  min-similarity-lines=5
 
257
  I1101,
258
  # R0903: Too few public methods (too-few-public-methods)
259
  R0903,
260
+ # R1702: Too many nested blocks (too-many-nested-blocks)
261
+ R1702,
262
 
263
  [SIMILARITIES]
264
  min-similarity-lines=5