Spaces:
Running
on
Zero
Running
on
Zero
JacobLinCool
commited on
Commit
·
7c6792a
1
Parent(s):
2029ea8
feat: gradio app
Browse files- .gitignore +5 -0
- app.py +334 -0
- requirements.txt +10 -0
- utils.py +18 -0
- zero.py +21 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
__pycache__/
|
3 |
+
*.pyc
|
4 |
+
|
5 |
+
task/
|
app.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matplotlib import pyplot as plt
|
2 |
+
from accelerate import Accelerator
|
3 |
+
from zero import zero
|
4 |
+
import gradio as gr
|
5 |
+
from typing import Tuple
|
6 |
+
import os
|
7 |
+
from os import path
|
8 |
+
from utils import plot_spec
|
9 |
+
import librosa
|
10 |
+
from hashlib import md5
|
11 |
+
from demucs.separate import main as demucs
|
12 |
+
from pyannote.audio import Pipeline
|
13 |
+
from json import dumps, loads
|
14 |
+
import shutil
|
15 |
+
|
16 |
+
accelerator = Accelerator()
|
17 |
+
device = accelerator.device
|
18 |
+
print(f"Running on {device}")
|
19 |
+
|
20 |
+
pipeline = Pipeline.from_pretrained(
|
21 |
+
"pyannote/speaker-diarization-3.1", use_auth_token=os.environ["HF_TOKEN"]
|
22 |
+
)
|
23 |
+
pipeline.to(device)
|
24 |
+
|
25 |
+
|
26 |
+
tasks = []
|
27 |
+
os.makedirs("task", exist_ok=True)
|
28 |
+
for task in os.listdir("task"):
|
29 |
+
if path.isdir(path.join("task", task)):
|
30 |
+
tasks.append(task)
|
31 |
+
|
32 |
+
|
33 |
+
def gen_task_id(location: str):
|
34 |
+
# use md5 hash of video file as task id
|
35 |
+
video = open(location, "rb").read()
|
36 |
+
return md5(video).hexdigest()
|
37 |
+
|
38 |
+
|
39 |
+
def extract_audio(video: str) -> Tuple[str, str, str]:
|
40 |
+
task_id = gen_task_id(video)
|
41 |
+
os.makedirs(path.join("task", task_id), exist_ok=True)
|
42 |
+
|
43 |
+
videodest = path.join("task", task_id, "video.mp4")
|
44 |
+
if not path.exists(videodest):
|
45 |
+
shutil.copy(video, videodest)
|
46 |
+
|
47 |
+
wav48k = path.join("task", task_id, "extracted_48k.wav")
|
48 |
+
if not path.exists(wav48k):
|
49 |
+
os.system(
|
50 |
+
f"ffmpeg -i {videodest} -vn -ar 48000 task/{task_id}/extracted_48k.wav"
|
51 |
+
)
|
52 |
+
|
53 |
+
spec = path.join("task", task_id, "extracted_48k.png")
|
54 |
+
if not path.exists(spec):
|
55 |
+
y, sr = librosa.load(wav48k, sr=16000)
|
56 |
+
fig = plot_spec(y, sr)
|
57 |
+
fig.savefig(path.join("task", task_id, "extracted_48k.png"))
|
58 |
+
plt.close(fig)
|
59 |
+
|
60 |
+
return (task_id, wav48k, spec)
|
61 |
+
|
62 |
+
|
63 |
+
@zero()
|
64 |
+
def extract_vocals(task_id: str) -> Tuple[str, str]:
|
65 |
+
audio = path.join("task", task_id, "extracted_48k.wav")
|
66 |
+
if not path.exists(audio):
|
67 |
+
raise gr.Error("Audio file not found")
|
68 |
+
|
69 |
+
vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav")
|
70 |
+
|
71 |
+
if not path.exists(vocals):
|
72 |
+
demucs(
|
73 |
+
[
|
74 |
+
"-d",
|
75 |
+
str(device),
|
76 |
+
"-n",
|
77 |
+
"htdemucs",
|
78 |
+
"--two-stems",
|
79 |
+
"vocals",
|
80 |
+
"-o",
|
81 |
+
path.join("task", task_id),
|
82 |
+
audio,
|
83 |
+
]
|
84 |
+
)
|
85 |
+
|
86 |
+
spec = path.join("task", task_id, "vocals.png")
|
87 |
+
if not path.exists(spec):
|
88 |
+
y, sr = librosa.load(vocals, sr=16000)
|
89 |
+
fig = plot_spec(y, sr)
|
90 |
+
fig.savefig(path.join("task", task_id, "vocals.png"))
|
91 |
+
plt.close(fig)
|
92 |
+
|
93 |
+
return (vocals, spec)
|
94 |
+
|
95 |
+
|
96 |
+
@zero(duration=60 * 2)
|
97 |
+
def diarize_audio(task_id: str):
|
98 |
+
vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav")
|
99 |
+
if not path.exists(vocals):
|
100 |
+
raise gr.Error("Vocals file not found")
|
101 |
+
|
102 |
+
diarization_json = path.join("task", task_id, "diarization.json")
|
103 |
+
if not path.exists(diarization_json):
|
104 |
+
result = pipeline(vocals)
|
105 |
+
with open(diarization_json, "w") as f:
|
106 |
+
diarization = []
|
107 |
+
for turn, _, speaker in result.itertracks(yield_label=True):
|
108 |
+
diarization.append(
|
109 |
+
{
|
110 |
+
"speaker": speaker,
|
111 |
+
"start": turn.start,
|
112 |
+
"end": turn.end,
|
113 |
+
"duration": turn.duration,
|
114 |
+
}
|
115 |
+
)
|
116 |
+
f.write(dumps(diarization))
|
117 |
+
with open(diarization_json, "r") as f:
|
118 |
+
diarization = loads(f.read())
|
119 |
+
|
120 |
+
filtered_json = path.join("task", task_id, "filtered_diarization.json")
|
121 |
+
if not path.exists(filtered_json):
|
122 |
+
# Filter out segments shorter than 2 second and group by speaker
|
123 |
+
filtered_segments = {}
|
124 |
+
for turn in diarization:
|
125 |
+
speaker = turn["speaker"]
|
126 |
+
if turn["duration"] >= 2.0:
|
127 |
+
if speaker not in filtered_segments:
|
128 |
+
filtered_segments[speaker] = []
|
129 |
+
filtered_segments[speaker].append(turn)
|
130 |
+
|
131 |
+
# Filter out speakers with less than 60 seconds of speech
|
132 |
+
filtered_segments = {
|
133 |
+
speaker: segments
|
134 |
+
for speaker, segments in filtered_segments.items()
|
135 |
+
if sum(segment["duration"] for segment in segments) >= 60
|
136 |
+
}
|
137 |
+
|
138 |
+
with open(filtered_json, "w") as f:
|
139 |
+
f.write(dumps(filtered_segments))
|
140 |
+
with open(filtered_json, "r") as f:
|
141 |
+
filtered_segments = loads(f.read())
|
142 |
+
|
143 |
+
return filtered_segments
|
144 |
+
|
145 |
+
|
146 |
+
def generate_clips(task_id: str, speaker: str) -> Tuple[str, str]:
|
147 |
+
video = path.join("task", task_id, "video.mp4")
|
148 |
+
if not path.exists(video):
|
149 |
+
raise gr.Error("Video file not found")
|
150 |
+
|
151 |
+
filtered_json = path.join("task", task_id, "filtered_diarization.json")
|
152 |
+
if not path.exists(filtered_json):
|
153 |
+
raise gr.Error("Diarization not found")
|
154 |
+
|
155 |
+
with open(filtered_json, "r") as f:
|
156 |
+
filtered_segments = loads(f.read())
|
157 |
+
|
158 |
+
if speaker not in filtered_segments:
|
159 |
+
raise gr.Error("Speaker not found")
|
160 |
+
|
161 |
+
mp4 = path.join("task", task_id, f"{speaker}.mp4")
|
162 |
+
if not path.exists(mp4):
|
163 |
+
cmd = f'ffmpeg -i {video} -filter_complex "'
|
164 |
+
for i, segment in enumerate(filtered_segments[speaker]):
|
165 |
+
start = segment["start"]
|
166 |
+
end = segment["end"]
|
167 |
+
cmd += f"[0:v]trim=start={start}:end={end},setpts=PTS-STARTPTS[v{i}];"
|
168 |
+
cmd += f"[0:a]atrim=start={start}:end={end},asetpts=PTS-STARTPTS[a{i}];"
|
169 |
+
for i in range(len(filtered_segments[speaker])):
|
170 |
+
cmd += f"[v{i}][a{i}]"
|
171 |
+
cmd += f'concat=n={len(filtered_segments[speaker])}:v=1:a=1[outv][outa]" -map [outv] -map [outa] -y {mp4}'
|
172 |
+
os.system(cmd)
|
173 |
+
|
174 |
+
segments = path.join("task", task_id, f"{speaker}")
|
175 |
+
if not path.exists(segments):
|
176 |
+
os.makedirs(segments)
|
177 |
+
for i, segment in enumerate(filtered_segments[speaker]):
|
178 |
+
start = segment["start"]
|
179 |
+
end = segment["end"]
|
180 |
+
name = path.join(segments, f"{i}_{start:.2f}_{end:.2f}.wav")
|
181 |
+
cmd = f"ffmpeg -i {video} -ss {start} -to {end} -f wav {name}"
|
182 |
+
os.system(cmd)
|
183 |
+
|
184 |
+
segments_zip = path.join("task", task_id, f"{speaker}.zip")
|
185 |
+
if not path.exists(segments_zip):
|
186 |
+
os.system(f"zip -r {segments_zip} {segments}")
|
187 |
+
|
188 |
+
return mp4, segments_zip
|
189 |
+
|
190 |
+
|
191 |
+
with gr.Blocks() as app:
|
192 |
+
gr.Markdown("# Video Speaker Diarization")
|
193 |
+
|
194 |
+
gr.Markdown(
|
195 |
+
"""
|
196 |
+
First, upload a video file. And let us do some inspection on the audio of the video.
|
197 |
+
"""
|
198 |
+
)
|
199 |
+
original_video = gr.Video(label="Upload a video", show_download_button=True)
|
200 |
+
preprocess_btn = gr.Button(value="Pre Process", variant="primary")
|
201 |
+
preprocess_btn_label = gr.Markdown("Press the button!")
|
202 |
+
|
203 |
+
with gr.Column(visible=False) as preprocess_output:
|
204 |
+
gr.Markdown(
|
205 |
+
"""
|
206 |
+
Now you can see the spectrogram of the extracted audio.
|
207 |
+
|
208 |
+
Next, let's remove the background music from the audio.
|
209 |
+
"""
|
210 |
+
)
|
211 |
+
task_id = gr.Textbox(label="Task ID", visible=False)
|
212 |
+
extracted_audio = gr.Audio(label="Extracted Audio", type="filepath")
|
213 |
+
extracted_audio_spec = gr.Image(label="Extracted Audio Spectrogram")
|
214 |
+
|
215 |
+
extract_vocals_btn = gr.Button(
|
216 |
+
value="Remove Background Music", variant="primary"
|
217 |
+
)
|
218 |
+
extract_vocals_btn_label = gr.Markdown("Press the button!")
|
219 |
+
|
220 |
+
with gr.Column(visible=False) as extract_vocals_output:
|
221 |
+
vocals = gr.Audio(label="Vocals", type="filepath")
|
222 |
+
vocals_spec = gr.Image(label="Vocals Spectrogram")
|
223 |
+
|
224 |
+
diarize_btn = gr.Button(value="Diarize", variant="primary")
|
225 |
+
diarize_btn_label = gr.Markdown("Press the button!")
|
226 |
+
|
227 |
+
with gr.Column(visible=False) as diarize_output:
|
228 |
+
gr.Markdown(
|
229 |
+
"""
|
230 |
+
Now you can select the speaker from the dropdown below to generate the clips of the speaker.
|
231 |
+
"""
|
232 |
+
)
|
233 |
+
speaker_select = gr.Dropdown(label="Speaker", choices=[])
|
234 |
+
diarization_result = gr.Markdown("")
|
235 |
+
|
236 |
+
generate_clips_btn = gr.Button(value="Generate Clips", variant="primary")
|
237 |
+
generate_clips_btn_label = gr.Markdown("Press the button!")
|
238 |
+
|
239 |
+
with gr.Column(visible=False) as generate_clips_output:
|
240 |
+
speaker_clip = gr.Video(label="Speaker Clip")
|
241 |
+
speaker_clip_zip = gr.File(label="Download Audio Segments")
|
242 |
+
|
243 |
+
def preprocess(video: str):
|
244 |
+
task_id_val, extracted_audio_val, extracted_audio_spec_val = extract_audio(
|
245 |
+
video
|
246 |
+
)
|
247 |
+
return {
|
248 |
+
preprocess_output: gr.Column(visible=True),
|
249 |
+
task_id: task_id_val,
|
250 |
+
extracted_audio: extracted_audio_val,
|
251 |
+
extracted_audio_spec: extracted_audio_spec_val,
|
252 |
+
preprocess_btn_label: gr.Markdown("", visible=False),
|
253 |
+
}
|
254 |
+
|
255 |
+
preprocess_btn.click(
|
256 |
+
fn=preprocess,
|
257 |
+
inputs=[original_video],
|
258 |
+
outputs=[
|
259 |
+
preprocess_output,
|
260 |
+
task_id,
|
261 |
+
extracted_audio,
|
262 |
+
extracted_audio_spec,
|
263 |
+
preprocess_btn_label,
|
264 |
+
],
|
265 |
+
api_name="preprocess",
|
266 |
+
)
|
267 |
+
|
268 |
+
def extract_vocals_fn(task_id: str):
|
269 |
+
vocals_val, vocals_spec_val = extract_vocals(task_id)
|
270 |
+
return {
|
271 |
+
extract_vocals_output: gr.Column(visible=True),
|
272 |
+
vocals: vocals_val,
|
273 |
+
vocals_spec: vocals_spec_val,
|
274 |
+
extract_vocals_btn_label: gr.Markdown("", visible=False),
|
275 |
+
}
|
276 |
+
|
277 |
+
extract_vocals_btn.click(
|
278 |
+
fn=extract_vocals_fn,
|
279 |
+
inputs=[task_id],
|
280 |
+
outputs=[extract_vocals_output, vocals, vocals_spec, extract_vocals_btn_label],
|
281 |
+
api_name="extract_vocals",
|
282 |
+
)
|
283 |
+
|
284 |
+
def diarize_fn(task_id: str):
|
285 |
+
filtered_segments = diarize_audio(task_id)
|
286 |
+
choices = []
|
287 |
+
for speaker in filtered_segments:
|
288 |
+
total = sum(segment["duration"] for segment in filtered_segments[speaker])
|
289 |
+
choices.append((f"{speaker} ({total:.2f}s)", speaker))
|
290 |
+
|
291 |
+
info = ""
|
292 |
+
for speaker, segments in filtered_segments.items():
|
293 |
+
total = sum(segment["duration"] for segment in segments)
|
294 |
+
info += f"### Speaker {speaker}: ({total:.2f}s)\n"
|
295 |
+
for segment in segments:
|
296 |
+
start = segment["start"]
|
297 |
+
end = segment["end"]
|
298 |
+
info += f"- {start:.2f} - {end:.2f} ({segment['duration']:.2f}s)\n"
|
299 |
+
return {
|
300 |
+
diarize_output: gr.Column(visible=True),
|
301 |
+
speaker_select: gr.Dropdown(label="Speaker", choices=choices),
|
302 |
+
diarization_result: gr.Markdown(info),
|
303 |
+
diarize_btn_label: gr.Markdown("", visible=False),
|
304 |
+
}
|
305 |
+
|
306 |
+
diarize_btn.click(
|
307 |
+
fn=diarize_fn,
|
308 |
+
inputs=[task_id],
|
309 |
+
outputs=[diarize_output, speaker_select, diarization_result, diarize_btn_label],
|
310 |
+
api_name="diarize",
|
311 |
+
)
|
312 |
+
|
313 |
+
def generate_clips_fn(task_id: str, speaker: str):
|
314 |
+
speaker_clip_val, zip_val = generate_clips(task_id, speaker)
|
315 |
+
return {
|
316 |
+
generate_clips_output: gr.Column(visible=True),
|
317 |
+
speaker_clip: speaker_clip_val,
|
318 |
+
speaker_clip_zip: zip_val,
|
319 |
+
generate_clips_btn_label: gr.Markdown("", visible=False),
|
320 |
+
}
|
321 |
+
|
322 |
+
generate_clips_btn.click(
|
323 |
+
fn=generate_clips_fn,
|
324 |
+
inputs=[task_id, speaker_select],
|
325 |
+
outputs=[
|
326 |
+
generate_clips_output,
|
327 |
+
speaker_clip,
|
328 |
+
speaker_clip_zip,
|
329 |
+
generate_clips_btn_label,
|
330 |
+
],
|
331 |
+
api_name="generate_clips",
|
332 |
+
)
|
333 |
+
|
334 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.2.0
|
2 |
+
soundfile==0.12.1
|
3 |
+
numpy==1.26.0
|
4 |
+
librosa==0.9.2
|
5 |
+
einops==0.8.0
|
6 |
+
gradio==4.37.2
|
7 |
+
accelerate==0.31.0
|
8 |
+
matplotlib==3.8.3
|
9 |
+
demucs==4.0.1
|
10 |
+
pyannote-audio==3.3.1
|
utils.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import librosa
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from librosa.display import specshow
|
5 |
+
|
6 |
+
|
7 |
+
def plot_spec(y: np.ndarray, sr: int, title: str = "Spectrogram") -> plt.Figure:
|
8 |
+
y[np.isnan(y)] = 0
|
9 |
+
y[np.isinf(y)] = 0
|
10 |
+
stft = librosa.stft(y=y)
|
11 |
+
D = librosa.amplitude_to_db(np.abs(stft), ref=np.max)
|
12 |
+
|
13 |
+
fig = plt.figure(figsize=(10, 4))
|
14 |
+
specshow(D, sr=sr, y_axis="linear", x_axis="time", cmap="viridis")
|
15 |
+
plt.title(title)
|
16 |
+
plt.tight_layout()
|
17 |
+
|
18 |
+
return fig
|
zero.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
zero_is_available = "SPACES_ZERO_GPU" in os.environ
|
4 |
+
|
5 |
+
if zero_is_available:
|
6 |
+
import spaces # type: ignore
|
7 |
+
|
8 |
+
print("ZeroGPU is available")
|
9 |
+
else:
|
10 |
+
print("ZeroGPU is not available")
|
11 |
+
|
12 |
+
|
13 |
+
# a decorator that applies the spaces.GPU decorator if zero is available
|
14 |
+
def zero(duration=60):
|
15 |
+
def wrapper(func):
|
16 |
+
if zero_is_available:
|
17 |
+
return spaces.GPU(func, duration=duration)
|
18 |
+
else:
|
19 |
+
return func
|
20 |
+
|
21 |
+
return wrapper
|