Jaehan's picture
Update app.py
eddb472
raw
history blame contribute delete
783 Bytes
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
import gradio as grad
model_name="google/pegasus-xsum"
pega_tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name)
def summarize(text):
tokens = pega_tokenizer(text, truncation=True, padding="longest", return_tensors="pt")
trans_text = model.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10)
response = pega_tokenizer.batch_decode(trans_text, skip_special_tokens=True)
return response
in_text = grad.Textbox(lines=10, label="English", placeholder="English text here")
out_text = grad.Textbox(lines=10, label="Summary")
grad.Interface(summarize, inputs=in_text, outputs=out_text).launch()