JakeTurner616
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,24 @@ def generate_text(prompt, max_length, temperature, top_p, repetition_penalty):
|
|
5 |
tokenizer = GPT2TokenizerFast.from_pretrained("JakeTurner616/Adonalsium-gpt-neo-1.3B")
|
6 |
model = GPTNeoForCausalLM.from_pretrained("JakeTurner616/Adonalsium-gpt-neo-1.3B")
|
7 |
|
8 |
-
#
|
9 |
if tokenizer.pad_token is None:
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
11 |
-
model.resize_token_embeddings(len(tokenizer))
|
12 |
|
13 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
|
|
|
|
|
|
14 |
outputs = model.generate(
|
15 |
input_ids=inputs["input_ids"],
|
|
|
16 |
max_length=max_length,
|
17 |
temperature=temperature,
|
18 |
top_p=top_p,
|
19 |
repetition_penalty=repetition_penalty,
|
20 |
-
no_repeat_ngram_size=2
|
|
|
|
|
21 |
)
|
22 |
|
23 |
generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
|
|
5 |
tokenizer = GPT2TokenizerFast.from_pretrained("JakeTurner616/Adonalsium-gpt-neo-1.3B")
|
6 |
model = GPTNeoForCausalLM.from_pretrained("JakeTurner616/Adonalsium-gpt-neo-1.3B")
|
7 |
|
8 |
+
# Set pad token
|
9 |
if tokenizer.pad_token is None:
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
11 |
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
13 |
+
# Ensure that pad_token_id is set for the model
|
14 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
15 |
+
|
16 |
outputs = model.generate(
|
17 |
input_ids=inputs["input_ids"],
|
18 |
+
attention_mask=inputs["attention_mask"], # Explicitly pass attention mask
|
19 |
max_length=max_length,
|
20 |
temperature=temperature,
|
21 |
top_p=top_p,
|
22 |
repetition_penalty=repetition_penalty,
|
23 |
+
no_repeat_ngram_size=2, # Correctly specify the no_repeat_ngram_size
|
24 |
+
do_sample=True, # Ensure sampling is enabled for temperature and top_p to take effect
|
25 |
+
pad_token_id=tokenizer.pad_token_id
|
26 |
)
|
27 |
|
28 |
generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|