Spaces:
Runtime error
Runtime error
Jamiiwej2903
commited on
Update main.py
Browse files
main.py
CHANGED
@@ -7,46 +7,39 @@ from PIL import Image
|
|
7 |
import ffmpeg
|
8 |
import tempfile
|
9 |
import os
|
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
|
14 |
|
15 |
@app.post("/generate_video/")
|
16 |
async def generate_video_api(
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
fps: int = Form(7)
|
21 |
):
|
22 |
try:
|
23 |
# Read the uploaded image file
|
24 |
image_content = await file.read()
|
25 |
-
|
26 |
-
|
27 |
-
frames
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
"inputs": f"{prompt}, frame {i+1} of {num_frames}",
|
32 |
"parameters": {
|
33 |
-
"num_inference_steps":
|
34 |
-
"
|
35 |
}
|
36 |
}
|
37 |
-
|
38 |
-
# Make the API call
|
39 |
-
response = requests.post(API_URL, json=payload)
|
40 |
-
response.raise_for_status()
|
41 |
-
|
42 |
-
# Add the generated image to frames
|
43 |
-
frames.append(Image.open(io.BytesIO(response.content)))
|
44 |
|
45 |
# Create a temporary directory
|
46 |
with tempfile.TemporaryDirectory() as tmpdir:
|
47 |
# Save frames as temporary files
|
48 |
frame_files = []
|
49 |
-
for i, frame in enumerate(
|
50 |
frame_file = os.path.join(tmpdir, f"frame_{i:03d}.png")
|
51 |
frame.save(frame_file)
|
52 |
frame_files.append(frame_file)
|
@@ -70,17 +63,8 @@ async def generate_video_api(
|
|
70 |
# Return the video as a streaming response
|
71 |
return StreamingResponse(io.BytesIO(video_content), media_type="video/mp4")
|
72 |
|
73 |
-
except requests.exceptions.HTTPError as http_err:
|
74 |
-
# Handle HTTP errors
|
75 |
-
error_detail = f"HTTP error occurred: {http_err}"
|
76 |
-
raise HTTPException(status_code=500, detail=error_detail)
|
77 |
-
|
78 |
-
except ffmpeg.Error as e:
|
79 |
-
# Handle FFmpeg errors
|
80 |
-
raise HTTPException(status_code=500, detail=f"FFmpeg error occurred: {e.stderr.decode()}")
|
81 |
-
|
82 |
except Exception as err:
|
83 |
-
# Handle any
|
84 |
raise HTTPException(status_code=500, detail=f"An error occurred: {err}")
|
85 |
|
86 |
if __name__ == "__main__":
|
|
|
7 |
import ffmpeg
|
8 |
import tempfile
|
9 |
import os
|
10 |
+
from huggingface_hub import InferenceClient
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
client = InferenceClient("stabilityai/stable-video-diffusion-img2vid-xt-1-1-tensorrt")
|
15 |
|
16 |
@app.post("/generate_video/")
|
17 |
async def generate_video_api(
|
18 |
+
file: UploadFile = File(...),
|
19 |
+
num_frames: int = Form(14),
|
20 |
+
fps: int = Form(7)
|
|
|
21 |
):
|
22 |
try:
|
23 |
# Read the uploaded image file
|
24 |
image_content = await file.read()
|
25 |
+
image = Image.open(io.BytesIO(image_content))
|
26 |
+
|
27 |
+
# Generate video frames using the stable-video-diffusion model
|
28 |
+
video_frames = client.post(
|
29 |
+
json={
|
30 |
+
"inputs": image,
|
|
|
31 |
"parameters": {
|
32 |
+
"num_inference_steps": 25,
|
33 |
+
"num_frames": num_frames,
|
34 |
}
|
35 |
}
|
36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Create a temporary directory
|
39 |
with tempfile.TemporaryDirectory() as tmpdir:
|
40 |
# Save frames as temporary files
|
41 |
frame_files = []
|
42 |
+
for i, frame in enumerate(video_frames):
|
43 |
frame_file = os.path.join(tmpdir, f"frame_{i:03d}.png")
|
44 |
frame.save(frame_file)
|
45 |
frame_files.append(frame_file)
|
|
|
63 |
# Return the video as a streaming response
|
64 |
return StreamingResponse(io.BytesIO(video_content), media_type="video/mp4")
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
except Exception as err:
|
67 |
+
# Handle any errors
|
68 |
raise HTTPException(status_code=500, detail=f"An error occurred: {err}")
|
69 |
|
70 |
if __name__ == "__main__":
|