Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import os | |
import json | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from einops import repeat | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.activations import get_activation | |
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor | |
from diffusers.models.embeddings import ( | |
GaussianFourierProjection, | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from diffusers.models.modeling_utils import ModelMixin | |
# from rotary_embedding_torch import RotaryEmbedding | |
try: | |
from unet_blocks import (UNetMidBlock3DCrossAttn, | |
get_down_block, get_up_block, | |
CrossAttnDownBlock3D, | |
DownBlock3D, | |
CrossAttnUpBlock3D, | |
UpBlock3D) | |
from resnet import InflatedConv3d | |
from rotary_embedding_torch_mx import RotaryEmbedding | |
except: | |
from .unet_blocks import (UNetMidBlock3DCrossAttn, | |
get_down_block, get_up_block, | |
CrossAttnDownBlock3D, | |
DownBlock3D, | |
CrossAttnUpBlock3D, | |
UpBlock3D) | |
from .resnet import InflatedConv3d | |
from .rotary_embedding_torch_mx import RotaryEmbedding | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNet3DConditionOutput(BaseOutput): | |
""" | |
The output of [`UNet2DConditionModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor = None | |
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlock3D", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlock3DCrossAttn", | |
up_block_types: Tuple[str] = ( | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D" | |
), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, # xl false | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
encoder_hid_dim: Optional[int] = None, # xl null | |
encoder_hid_dim_type: Optional[str] = None, # xl null | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, # xl null | |
dual_cross_attention: bool = False, # false | |
use_linear_projection: bool = False, # xl true | |
class_embed_type: Optional[str] = None, # null | |
addition_embed_type: Optional[str] = None, # xl text_time | |
addition_time_embed_dim: Optional[int] = None, # xl 256 | |
num_class_embeds: Optional[int] = None, # xl null | |
upcast_attention: bool = False, # xl false | |
resnet_time_scale_shift: str = "default", # xl default | |
resnet_skip_time_act: bool = False, # xl false | |
resnet_out_scale_factor: int = 1.0, # xl 1.0 | |
time_embedding_type: str = "positional", # xl positional | |
time_embedding_dim: Optional[int] = None, # xl null | |
time_embedding_act_fn: Optional[str] = None, # xl null | |
timestep_post_act: Optional[str] = None, # xl null | |
time_cond_proj_dim: Optional[int] = None, # null | |
conv_in_kernel: int = 3, # xl 3 | |
conv_out_kernel: int = 3, # xl 3 | |
projection_class_embeddings_input_dim: Optional[int] = None, # 2816 | |
class_embeddings_concat: bool = False, # xl false | |
mid_block_only_cross_attention: Optional[bool] = None, # null | |
cross_attention_norm: Optional[str] = None, # null | |
addition_embed_type_num_heads=64, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
if num_attention_heads is not None: | |
raise ValueError( | |
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." | |
) | |
# If `num_attention_heads` is not defined (which is the case for most models) | |
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
# The reason for this behavior is to correct for incorrectly named variables that were introduced | |
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
# which is why we correct for the naming here. | |
num_attention_heads = num_attention_heads or attention_head_dim | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) | |
# time | |
if time_embedding_type == "fourier": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 | |
if time_embed_dim % 2 != 0: | |
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") | |
self.time_proj = GaussianFourierProjection( | |
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
) | |
timestep_input_dim = time_embed_dim | |
elif time_embedding_type == "positional": # we are here | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
else: | |
raise ValueError( | |
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
) | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
post_act_fn=timestep_post_act, | |
cond_proj_dim=time_cond_proj_dim, | |
) | |
if addition_embed_type == "motion_ids": # we need this in our situation | |
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) | |
self.add_embedding = TimestepEmbedding(addition_time_embed_dim, time_embed_dim) | |
# nn.init.zeros_(self.add_embedding.linear_1.weight.data) | |
nn.init.zeros_(self.add_embedding.linear_2.weight.data) | |
elif addition_embed_type is not None: | |
print("Not use any addition embed type!") | |
# raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): # only_cross_attention is False | |
if mid_block_only_cross_attention is None: # mid_block_only_cross_attention is None | |
mid_block_only_cross_attention = only_cross_attention # Thus, mid_block_only_cross_attention is False | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = False | |
if isinstance(num_attention_heads, int): # num_attention_heads is None | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
if class_embeddings_concat: | |
# The time embeddings are concatenated with the class embeddings. The dimension of the | |
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the | |
# regular time embeddings | |
blocks_time_embed_dim = time_embed_dim * 2 | |
else: | |
blocks_time_embed_dim = time_embed_dim | |
# rotary_emb = RotaryEmbedding(dim = 32, | |
# interpolate_factor = 2.) | |
rotary_emb = RotaryEmbedding(dim = 32) | |
# rotary_emb = None | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
rotary_emb=rotary_emb, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock3DCrossAttn": | |
self.mid_block = UNetMidBlock3DCrossAttn( | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
in_channels=block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
rotary_emb=rotary_emb, | |
) | |
elif mid_block_type is None: | |
self.mid_block = None | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=reversed_layers_per_block[i] + 1, | |
transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
num_attention_heads=reversed_num_attention_heads[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
rotary_emb=rotary_emb, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
self.conv_act = get_activation(act_fn) | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) | |
# clip image preject | |
# self.clip_img_proj = nn.Linear(768, 768, bias=True) | |
# self.add_time_proj_silu = nn.SiLU() | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
encoder_img_hidden_states: Optional[torch.Tensor] = None, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
base_content: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_motion_ids: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
use_image_num: int = 0, | |
) -> Union[UNet3DConditionOutput, Tuple]: | |
r""" | |
The [`UNet2DConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
encoder_attention_mask (`torch.Tensor`): | |
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | |
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | |
which adds large negative values to the attention scores corresponding to "discard" tokens. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet3DConditionOutput`] instead of a plain | |
tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if self.config.addition_embed_type == "motion_ids": # we are here | |
motion_ids_embeds = self.add_time_proj(added_motion_ids.flatten()).to(dtype=emb.dtype) | |
aug_emb = self.add_embedding(motion_ids_embeds) | |
emb = emb + aug_emb if aug_emb is not None else emb # emb is timesteps; aug_emb is the combination of text_embeds and time_embeds | |
# 2. pre-process | |
sample = base_content + sample | |
sample = torch.cat([base_content, sample], dim=2) | |
sample = self.conv_in(sample) | |
# 3. down | |
# print(encoder_hidden_states.shape) # shape [2, 77, 2048] | |
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# For t2i-adapter CrossAttnDownBlock2D | |
additional_residuals = {} | |
if is_adapter and len(down_block_additional_residuals) > 0: | |
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
use_image_num=use_image_num, | |
**additional_residuals, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
if is_adapter and len(down_block_additional_residuals) > 0: | |
sample += down_block_additional_residuals.pop(0) | |
down_block_res_samples += res_samples | |
if is_controlnet: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
use_image_num=use_image_num, | |
) | |
if is_controlnet: | |
sample = sample + mid_block_additional_residual | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
use_image_num=use_image_num, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample)[:, :, 1:, ...] | |
if not return_dict: | |
return (sample,) | |
return UNet3DConditionOutput(sample=sample) | |
def forward_with_cfg(self, | |
x, | |
t, | |
encoder_hidden_states = None, | |
added_cond_kwargs = None, | |
class_labels: Optional[torch.Tensor] = None, | |
cfg_scale=7.0, | |
use_fp16=False): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
if use_fp16: | |
combined = combined.to(dtype=torch.float16) | |
model_out = self.forward(combined, t, encoder_hidden_states, class_labels, added_cond_kwargs=added_cond_kwargs).sample | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
eps, rest = model_out[:, :4], model_out[:, 4:] | |
# eps, rest = model_out[:, :3], model_out[:, 3:] # b c f h w | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
# @classmethod | |
# def from_pretrained_2d(cls, pretrained_model_path, subfolder=None): | |
# if subfolder is not None: | |
# pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
# config_file = os.path.join(pretrained_model_path, 'config.json') | |
# if not os.path.isfile(config_file): | |
# raise RuntimeError(f"{config_file} does not exist") | |
# with open(config_file, "r") as f: | |
# config = json.load(f) | |
# config["_class_name"] = cls.__name__ | |
# config["down_block_types"] = [ | |
# "CrossAttnDownBlock3D", | |
# "CrossAttnDownBlock3D", | |
# "CrossAttnDownBlock3D", | |
# "DownBlock3D" | |
# ] | |
# config["mid_block_type"] = "UNetMidBlock3DCrossAttn" | |
# config["up_block_types"] = [ | |
# "UpBlock3D", | |
# "CrossAttnUpBlock3D", | |
# "CrossAttnUpBlock3D", | |
# "CrossAttnUpBlock3D" | |
# ] | |
# # animation training method | |
# config["addition_embed_type"] = "motion_ids" | |
# # config["addition_embed_type"] = "" | |
# # config["addition_embed_type_num_heads"] = 64 | |
# config["addition_time_embed_dim"] = 256 | |
# # config["projection_class_embeddings_input_dim"] = 2816 | |
# from diffusers.utils import WEIGHTS_NAME # diffusion_pytorch_model.bin | |
# model = cls.from_config(config) | |
# return model |