Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
This PR allows the user to automatically randomize the seed
Browse files
demo.py
CHANGED
@@ -132,8 +132,10 @@ def prepare_image(image, vae, transform_video, device, dtype=torch.float16):
|
|
132 |
|
133 |
|
134 |
@spaces.GPU
|
135 |
-
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed):
|
136 |
|
|
|
|
|
137 |
torch.manual_seed(seed)
|
138 |
|
139 |
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
|
@@ -248,6 +250,7 @@ with gr.Blocks() as demo:
|
|
248 |
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)
|
249 |
|
250 |
with gr.Row():
|
|
|
251 |
seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True)
|
252 |
# seed_textbox = gr.Textbox(label="Seed", value=100)
|
253 |
# seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
|
@@ -270,22 +273,22 @@ with gr.Blocks() as demo:
|
|
270 |
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
|
271 |
|
272 |
EXAMPLES = [
|
273 |
-
["./example/red_panda_eating_bamboo/0.jpg", "red panda eating bamboo" , "low quality", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
274 |
-
["./example/fireworks/0.jpg", "fireworks" , "low quality", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
275 |
-
["./example/flowers_swaying/0.jpg", "flowers swaying" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
276 |
-
["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach" , "low quality, background changing", 50, 320, 512, 7.5, True, 0.25, 995, 10, 49494220],
|
277 |
-
["./example/house_rotating/0.jpg", "house rotating" , "low quality", 50, 320, 512, 7.5, True, 0.23, 985, 10, 46640174],
|
278 |
-
["./example/people_runing/0.jpg", "people runing" , "low quality, background changing", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
279 |
-
["./example/shark_swimming/0.jpg", "shark swimming" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 32947978],
|
280 |
-
["./example/car_moving/0.jpg", "car moving" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 75469653],
|
281 |
-
["./example/windmill_turning/0.jpg", "windmill turning" , "background changing", 50, 320, 512, 7.5, True, 0.21, 975, 10, 89378613],
|
282 |
]
|
283 |
|
284 |
|
285 |
examples = gr.Examples(
|
286 |
examples = EXAMPLES,
|
287 |
fn = gen_video,
|
288 |
-
inputs=[input_image, prompt_textbox, negative_prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed_textbox],
|
289 |
outputs=[result_video],
|
290 |
cache_examples=True,
|
291 |
# cache_examples="lazy",
|
@@ -305,6 +308,7 @@ with gr.Blocks() as demo:
|
|
305 |
dct_coefficients,
|
306 |
noise_level,
|
307 |
motion_bucket_id,
|
|
|
308 |
seed_textbox,
|
309 |
],
|
310 |
outputs=[result_video]
|
|
|
132 |
|
133 |
|
134 |
@spaces.GPU
|
135 |
+
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, randomize_seed, seed):
|
136 |
|
137 |
+
if randomize_seed:
|
138 |
+
seed = random.randint(1, int(1e8))
|
139 |
torch.manual_seed(seed)
|
140 |
|
141 |
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
|
|
|
250 |
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)
|
251 |
|
252 |
with gr.Row():
|
253 |
+
randomize_seed_checkbox = gr.Checkbox(label = "Randomize seed", value = True, info = "If checked, result is always different")
|
254 |
seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True)
|
255 |
# seed_textbox = gr.Textbox(label="Seed", value=100)
|
256 |
# seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
|
|
|
273 |
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
|
274 |
|
275 |
EXAMPLES = [
|
276 |
+
["./example/red_panda_eating_bamboo/0.jpg", "red panda eating bamboo" , "low quality", 50, 320, 512, 7.5, True, 0.23, 975, 10, False, 100],
|
277 |
+
["./example/fireworks/0.jpg", "fireworks" , "low quality", 50, 320, 512, 7.5, True, 0.23, 975, 10, False, 100],
|
278 |
+
["./example/flowers_swaying/0.jpg", "flowers swaying" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, False, 100],
|
279 |
+
["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach" , "low quality, background changing", 50, 320, 512, 7.5, True, 0.25, 995, 10, False, 49494220],
|
280 |
+
["./example/house_rotating/0.jpg", "house rotating" , "low quality", 50, 320, 512, 7.5, True, 0.23, 985, 10, False, 46640174],
|
281 |
+
["./example/people_runing/0.jpg", "people runing" , "low quality, background changing", 50, 320, 512, 7.5, True, 0.23, 975, 10, False, 100],
|
282 |
+
["./example/shark_swimming/0.jpg", "shark swimming" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, False, 32947978],
|
283 |
+
["./example/car_moving/0.jpg", "car moving" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, False, 75469653],
|
284 |
+
["./example/windmill_turning/0.jpg", "windmill turning" , "background changing", 50, 320, 512, 7.5, True, 0.21, 975, 10, False, 89378613],
|
285 |
]
|
286 |
|
287 |
|
288 |
examples = gr.Examples(
|
289 |
examples = EXAMPLES,
|
290 |
fn = gen_video,
|
291 |
+
inputs=[input_image, prompt_textbox, negative_prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, randomize_seed_checkbox, seed_textbox],
|
292 |
outputs=[result_video],
|
293 |
cache_examples=True,
|
294 |
# cache_examples="lazy",
|
|
|
308 |
dct_coefficients,
|
309 |
noise_level,
|
310 |
motion_bucket_id,
|
311 |
+
randomize_seed_checkbox,
|
312 |
seed_textbox,
|
313 |
],
|
314 |
outputs=[result_video]
|