Jathish's picture
Duplicate from lcw99/gpt-neo-1.3B-ko-text-generator
656c9b4
raw
history blame
3.21 kB
import copy
import torch
import torch.nn.functional as F
from transformers import GPTNeoForCausalLM, AutoTokenizer, pipeline
import numpy as np
from tqdm import trange
import streamlit as st
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
try:
torch.cuda.manual_seed_all(seed)
except:
pass
MODEL_CLASSES = {
'lcw99/gpt-neo-1.3B-ko-fp16': (GPTNeoForCausalLM, AutoTokenizer),
'lcw99/gpt-neo-1.3B-ko': (GPTNeoForCausalLM, AutoTokenizer),
}
# @st.cache
def load_model(model_name):
model_class, tokenizer_class = MODEL_CLASSES[model_name]
model = model_class.from_pretrained(
model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
use_cache=False,
gradient_checkpointing=False,
device_map='auto',
#revision="float16",
#load_in_8bit=True
)
tokenizer = tokenizer_class.from_pretrained(model_name)
model.to(device)
model.eval()
return model, tokenizer
if __name__ == "__main__":
# Selectors
model_name = st.sidebar.selectbox("Model", list(MODEL_CLASSES.keys()))
length = st.sidebar.slider("Length", 50, 2048, 100)
temperature = st.sidebar.slider("Temperature", 0.0, 3.0, 0.8)
top_k = st.sidebar.slider("Top K", 0, 10, 0)
top_p = st.sidebar.slider("Top P", 0.0, 1.0, 0.7)
st.title("Text generation with GPT-neo Korean")
raw_text = st.text_input("์‹œ์ž‘ํ•˜๋Š” ๋ฌธ์žฅ์„ ์ž…๋ ฅํ•˜๊ณ  ์—”ํ„ฐ๋ฅผ ์น˜์„ธ์š”.", placeholder="๊ณจํ”„๋ฅผ ์ž˜ ์น˜๊ณ  ์‹ถ๋‹ค๋ฉด,",
key="text_input1")
if raw_text:
st.write(raw_text)
with st.spinner(f'loading model({model_name}) wait...'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, tokenizer = load_model(model_name)
# making a copy so streamlit doesn't reload models
# model = copy.deepcopy(model)
# tokenizer = copy.deepcopy(tokenizer)
if False:
text_generation = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
with st.spinner(f'Generating text wait...'):
# generated = text_generation(
# raw_text,
# max_length=length,
# do_sample=True,
# min_length=100,
# num_return_sequences=3,
# top_p=top_p,
# top_k=top_k
# )
# st.write(*generated)
encoded_input = tokenizer(raw_text, return_tensors='pt')
output_sequences = model.generate(
input_ids=encoded_input['input_ids'].to(device),
attention_mask=encoded_input['attention_mask'].to(device),
max_length=length,
do_sample=True,
min_length=20,
top_p=top_p,
top_k=top_k
)
generated = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
#print(generated)
st.write(generated)