Spaces:
Running
Running
Jellyfish042
commited on
Commit
·
6d540bf
1
Parent(s):
f276a79
update
Browse files
app.py
CHANGED
@@ -8,6 +8,9 @@ from huggingface_hub.utils._errors import EntryNotFoundError, RepositoryNotFound
|
|
8 |
from dotenv import load_dotenv
|
9 |
from matplotlib.colors import LinearSegmentedColormap
|
10 |
import plotly.express as px
|
|
|
|
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
webhook_url = os.environ.get("WEBHOOK_URL")
|
@@ -271,6 +274,29 @@ for folder in get_folders_matching_format('data'):
|
|
271 |
pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))
|
272 |
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
def create_scaling_plot(all_data, period):
|
275 |
selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
|
276 |
target_data = all_data[period]
|
@@ -284,12 +310,36 @@ def create_scaling_plot(all_data, period):
|
|
284 |
'Average (The lower the better)': 'Compression Rate (%)'
|
285 |
}, inplace=True)
|
286 |
|
|
|
287 |
fig = px.scatter(new_df,
|
288 |
x='Params(B)',
|
289 |
y='Compression Rate (%)',
|
290 |
title='Compression Rate Scaling Law',
|
291 |
hover_name='Name'
|
292 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
fig.update_traces(marker=dict(size=12))
|
294 |
return fig
|
295 |
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
from matplotlib.colors import LinearSegmentedColormap
|
10 |
import plotly.express as px
|
11 |
+
import plotly.graph_objects as go
|
12 |
+
from sklearn.linear_model import LinearRegression
|
13 |
+
import numpy as np
|
14 |
|
15 |
load_dotenv()
|
16 |
webhook_url = os.environ.get("WEBHOOK_URL")
|
|
|
274 |
pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))
|
275 |
|
276 |
|
277 |
+
# def create_scaling_plot(all_data, period):
|
278 |
+
# selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
|
279 |
+
# target_data = all_data[period]
|
280 |
+
# new_df = pd.DataFrame()
|
281 |
+
#
|
282 |
+
# for size in target_data.keys():
|
283 |
+
# new_df = pd.concat([new_df, target_data[size]['cr'].loc[:, selected_columns]], axis=0)
|
284 |
+
#
|
285 |
+
# new_df.rename(columns={
|
286 |
+
# 'Parameters Count (B)': 'Params(B)',
|
287 |
+
# 'Average (The lower the better)': 'Compression Rate (%)'
|
288 |
+
# }, inplace=True)
|
289 |
+
#
|
290 |
+
# fig = px.scatter(new_df,
|
291 |
+
# x='Params(B)',
|
292 |
+
# y='Compression Rate (%)',
|
293 |
+
# title='Compression Rate Scaling Law',
|
294 |
+
# hover_name='Name'
|
295 |
+
# )
|
296 |
+
# fig.update_traces(marker=dict(size=12))
|
297 |
+
# return fig
|
298 |
+
|
299 |
+
|
300 |
def create_scaling_plot(all_data, period):
|
301 |
selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
|
302 |
target_data = all_data[period]
|
|
|
310 |
'Average (The lower the better)': 'Compression Rate (%)'
|
311 |
}, inplace=True)
|
312 |
|
313 |
+
# Create scatter plot
|
314 |
fig = px.scatter(new_df,
|
315 |
x='Params(B)',
|
316 |
y='Compression Rate (%)',
|
317 |
title='Compression Rate Scaling Law',
|
318 |
hover_name='Name'
|
319 |
)
|
320 |
+
|
321 |
+
# Add logarithmic trendline
|
322 |
+
X = new_df[['Params(B)']].values
|
323 |
+
y = new_df['Compression Rate (%)'].values
|
324 |
+
|
325 |
+
# Perform log transformation on X
|
326 |
+
X_log = np.log(X)
|
327 |
+
|
328 |
+
model = LinearRegression()
|
329 |
+
model.fit(X_log, y)
|
330 |
+
|
331 |
+
# Create trendline data for plot
|
332 |
+
X_plot = np.linspace(X_log.min() - 1, X_log.max() + 0.1, 100)
|
333 |
+
y_plot = model.predict(X_plot.reshape(-1, 1))
|
334 |
+
|
335 |
+
fig.add_trace(go.Scatter(
|
336 |
+
x=np.exp(X_plot),
|
337 |
+
y=y_plot,
|
338 |
+
mode='lines',
|
339 |
+
name='Trend',
|
340 |
+
line=dict(color='#39C5BB')
|
341 |
+
))
|
342 |
+
|
343 |
fig.update_traces(marker=dict(size=12))
|
344 |
return fig
|
345 |
|