Spaces:
Running
Running
Jellyfish042
commited on
Commit
·
8171dbf
1
Parent(s):
5dfb23a
update
Browse files- app.py +15 -39
- data/2024-07/1b5.xlsx +0 -0
- data/2024-07/3b.xlsx +0 -0
- data/2024-07/7b.xlsx +0 -0
- data/2024-07/9b.xlsx +0 -0
app.py
CHANGED
@@ -261,45 +261,6 @@ def submit_model(name):
|
|
261 |
return "ERROR: Unexpected error. Please try again later."
|
262 |
|
263 |
|
264 |
-
all_data = {}
|
265 |
-
time_list = []
|
266 |
-
for folder in get_folders_matching_format('data'):
|
267 |
-
folder_name = os.path.basename(folder)
|
268 |
-
time_list.append(folder_name)
|
269 |
-
if all_data.get(folder) is None:
|
270 |
-
all_data[folder_name] = {}
|
271 |
-
for file_name in file_name_list:
|
272 |
-
if all_data.get(file_name) is None:
|
273 |
-
all_data[folder_name][file_name] = {}
|
274 |
-
for sheet_name in sheet_name_list:
|
275 |
-
final_file_name = os.path.join(folder, file_name)
|
276 |
-
all_data[folder_name][file_name][sheet_name] = rename_columns(
|
277 |
-
pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))
|
278 |
-
|
279 |
-
|
280 |
-
# def create_scaling_plot(all_data, period):
|
281 |
-
# selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
|
282 |
-
# target_data = all_data[period]
|
283 |
-
# new_df = pd.DataFrame()
|
284 |
-
#
|
285 |
-
# for size in target_data.keys():
|
286 |
-
# new_df = pd.concat([new_df, target_data[size]['cr'].loc[:, selected_columns]], axis=0)
|
287 |
-
#
|
288 |
-
# new_df.rename(columns={
|
289 |
-
# 'Parameters Count (B)': 'Params(B)',
|
290 |
-
# 'Average (The lower the better)': 'Compression Rate (%)'
|
291 |
-
# }, inplace=True)
|
292 |
-
#
|
293 |
-
# fig = px.scatter(new_df,
|
294 |
-
# x='Params(B)',
|
295 |
-
# y='Compression Rate (%)',
|
296 |
-
# title='Compression Rate Scaling Law',
|
297 |
-
# hover_name='Name'
|
298 |
-
# )
|
299 |
-
# fig.update_traces(marker=dict(size=12))
|
300 |
-
# return fig
|
301 |
-
|
302 |
-
|
303 |
def create_scaling_plot(all_data, period):
|
304 |
selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
|
305 |
target_data = all_data[period]
|
@@ -385,6 +346,21 @@ def create_scaling_plot(all_data, period):
|
|
385 |
return fig
|
386 |
|
387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
initial_fig = create_scaling_plot(all_data, time_list[-1])
|
389 |
|
390 |
initial_period = time_list[-1]
|
|
|
261 |
return "ERROR: Unexpected error. Please try again later."
|
262 |
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
def create_scaling_plot(all_data, period):
|
265 |
selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
|
266 |
target_data = all_data[period]
|
|
|
346 |
return fig
|
347 |
|
348 |
|
349 |
+
all_data = {}
|
350 |
+
time_list = []
|
351 |
+
for folder in get_folders_matching_format('data'):
|
352 |
+
folder_name = os.path.basename(folder)
|
353 |
+
time_list.append(folder_name)
|
354 |
+
if all_data.get(folder) is None:
|
355 |
+
all_data[folder_name] = {}
|
356 |
+
for file_name in file_name_list:
|
357 |
+
if all_data.get(file_name) is None:
|
358 |
+
all_data[folder_name][file_name] = {}
|
359 |
+
for sheet_name in sheet_name_list:
|
360 |
+
final_file_name = os.path.join(folder, file_name)
|
361 |
+
all_data[folder_name][file_name][sheet_name] = rename_columns(
|
362 |
+
pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))
|
363 |
+
|
364 |
initial_fig = create_scaling_plot(all_data, time_list[-1])
|
365 |
|
366 |
initial_period = time_list[-1]
|
data/2024-07/1b5.xlsx
ADDED
Binary file (15.2 kB). View file
|
|
data/2024-07/3b.xlsx
ADDED
Binary file (14.8 kB). View file
|
|
data/2024-07/7b.xlsx
ADDED
Binary file (15.1 kB). View file
|
|
data/2024-07/9b.xlsx
ADDED
Binary file (11.5 kB). View file
|
|