Spaces:
Sleeping
Sleeping
feat: add monitoring module
Browse files- monitoring.py +97 -0
monitoring.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from datetime import datetime
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from collections import defaultdict
|
6 |
+
import threading
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
class PerformanceMonitor:
|
10 |
+
def __init__(self, metrics_file="metrics.json"):
|
11 |
+
self.metrics_file = metrics_file
|
12 |
+
self.metrics = defaultdict(list)
|
13 |
+
self.lock = threading.Lock()
|
14 |
+
self._load_metrics()
|
15 |
+
|
16 |
+
def _load_metrics(self):
|
17 |
+
"""Load existing metrics from file"""
|
18 |
+
if os.path.exists(self.metrics_file):
|
19 |
+
try:
|
20 |
+
with open(self.metrics_file, 'r') as f:
|
21 |
+
self.metrics.update(json.load(f))
|
22 |
+
except json.JSONDecodeError:
|
23 |
+
pass
|
24 |
+
|
25 |
+
def _save_metrics(self):
|
26 |
+
"""Save metrics to file"""
|
27 |
+
with self.lock:
|
28 |
+
with open(self.metrics_file, 'w') as f:
|
29 |
+
json.dump(dict(self.metrics), f)
|
30 |
+
|
31 |
+
def record_response_time(self, model_id, duration):
|
32 |
+
"""Record response time for a model"""
|
33 |
+
with self.lock:
|
34 |
+
self.metrics[f"{model_id}_response_times"].append({
|
35 |
+
'timestamp': datetime.now().isoformat(),
|
36 |
+
'duration': duration
|
37 |
+
})
|
38 |
+
self._save_metrics()
|
39 |
+
|
40 |
+
def record_success(self, model_id, success):
|
41 |
+
"""Record success/failure for a model"""
|
42 |
+
with self.lock:
|
43 |
+
self.metrics[f"{model_id}_success_rate"].append({
|
44 |
+
'timestamp': datetime.now().isoformat(),
|
45 |
+
'success': success
|
46 |
+
})
|
47 |
+
self._save_metrics()
|
48 |
+
|
49 |
+
def record_problem_type(self, problem_type):
|
50 |
+
"""Record usage of different problem types"""
|
51 |
+
with self.lock:
|
52 |
+
self.metrics['problem_types'].append({
|
53 |
+
'timestamp': datetime.now().isoformat(),
|
54 |
+
'type': problem_type
|
55 |
+
})
|
56 |
+
self._save_metrics()
|
57 |
+
|
58 |
+
def get_statistics(self):
|
59 |
+
"""Calculate and return performance statistics"""
|
60 |
+
stats = {}
|
61 |
+
|
62 |
+
# Response time statistics
|
63 |
+
for model in ['base', 'finetuned']:
|
64 |
+
times = [x['duration'] for x in self.metrics.get(f"{model}_response_times", [])]
|
65 |
+
if times:
|
66 |
+
stats[f"{model}_avg_response_time"] = np.mean(times)
|
67 |
+
stats[f"{model}_max_response_time"] = np.max(times)
|
68 |
+
stats[f"{model}_min_response_time"] = np.min(times)
|
69 |
+
|
70 |
+
# Success rate statistics
|
71 |
+
for model in ['base', 'finetuned']:
|
72 |
+
successes = [x['success'] for x in self.metrics.get(f"{model}_success_rate", [])]
|
73 |
+
if successes:
|
74 |
+
stats[f"{model}_success_rate"] = sum(successes) / len(successes) * 100
|
75 |
+
|
76 |
+
# Problem type distribution
|
77 |
+
problem_types = [x['type'] for x in self.metrics.get('problem_types', [])]
|
78 |
+
if problem_types:
|
79 |
+
type_counts = defaultdict(int)
|
80 |
+
for ptype in problem_types:
|
81 |
+
type_counts[ptype] += 1
|
82 |
+
total = len(problem_types)
|
83 |
+
stats['problem_type_distribution'] = {
|
84 |
+
ptype: (count / total) * 100
|
85 |
+
for ptype, count in type_counts.items()
|
86 |
+
}
|
87 |
+
|
88 |
+
return stats
|
89 |
+
|
90 |
+
def measure_time(func):
|
91 |
+
"""Decorator to measure function execution time"""
|
92 |
+
def wrapper(*args, **kwargs):
|
93 |
+
start_time = time.time()
|
94 |
+
result = func(*args, **kwargs)
|
95 |
+
duration = time.time() - start_time
|
96 |
+
return result, duration
|
97 |
+
return wrapper
|