Spaces:
Sleeping
Sleeping
Add initial demo files
Browse files- DESCRIPTION.md +1 -0
- README.md +59 -8
- Spacefile +24 -0
- app.py +144 -0
- monitoring.py +97 -0
- requirements.txt +11 -0
DESCRIPTION.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Interactive demo comparing base (1B) and fine-tuned (1.7B) L
|
README.md
CHANGED
@@ -1,14 +1,65 @@
|
|
1 |
---
|
2 |
-
title: Math
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: mit
|
11 |
-
short_description: Interactive demo comparing base (1B) and fine-tuned (1.7B) L
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Math Problem Solver Demo
|
3 |
+
emoji: 🧮
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.0.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
+
# Mathematics Problem Solver Demo
|
13 |
+
|
14 |
+
This demo showcases a comparison between base and fine-tuned language models in solving mathematical problems. It features real-time performance monitoring and supports multiple types of math problems.
|
15 |
+
|
16 |
+
## Models Used
|
17 |
+
|
18 |
+
- Base Model: [LlaMA 3.2 1B](https://huggingface.co/Alexis-Az/Math-Problem-LlaMA-3.2-1B-GGUF)
|
19 |
+
- Fine-tuned Model: [SmolLM2 1.7B](https://huggingface.co/Alexis-Az/Math-Problem-LlaMA-3.2-1.7B-GGUF)
|
20 |
+
|
21 |
+
## Features
|
22 |
+
|
23 |
+
- 🔢 Multiple problem types:
|
24 |
+
- Addition operations
|
25 |
+
- Root finding
|
26 |
+
- Derivatives
|
27 |
+
- Custom problems
|
28 |
+
- 📊 Real-time performance metrics:
|
29 |
+
- Response times
|
30 |
+
- Success rates
|
31 |
+
- Problem type distribution
|
32 |
+
- 🔄 Side-by-side model comparison
|
33 |
+
- ⚡ Example problems included
|
34 |
+
|
35 |
+
## How to Use
|
36 |
+
|
37 |
+
1. Select a problem type from the dropdown menu
|
38 |
+
2. Enter your math problem in the input field
|
39 |
+
3. Click "Solve" to see solutions from both models
|
40 |
+
4. Compare the results and view performance metrics
|
41 |
+
|
42 |
+
## Example Problems
|
43 |
+
|
44 |
+
Try these sample problems:
|
45 |
+
|
46 |
+
- Derivative: "Find the derivative of x^2 + 3x"
|
47 |
+
- Root Finding: "What is the square root of 144?"
|
48 |
+
- Addition: "Calculate 235 + 567"
|
49 |
+
|
50 |
+
## Performance Monitoring
|
51 |
+
|
52 |
+
The interface includes a live dashboard showing:
|
53 |
+
|
54 |
+
- Average response times for each model
|
55 |
+
- Success rates comparison
|
56 |
+
- Distribution of problem types solved
|
57 |
+
- Real-time performance metrics
|
58 |
+
|
59 |
+
## Project Details
|
60 |
+
|
61 |
+
This demo is part of a larger project comparing LLM performance on mathematical problems. The models have been fine-tuned on a custom dataset of mathematical problems to improve their problem-solving capabilities.
|
62 |
+
|
63 |
+
## Credits
|
64 |
+
|
65 |
+
Models provided by [Alexis-Az](https://huggingface.co/Alexis-Az)
|
Spacefile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Spacefile for math-llm-demo
|
2 |
+
configuration:
|
3 |
+
name: math-llm-demo
|
4 |
+
organization: Joash2024
|
5 |
+
hardware:
|
6 |
+
cpu: 2
|
7 |
+
memory: 16
|
8 |
+
system:
|
9 |
+
python_version: "3.10"
|
10 |
+
|
11 |
+
sdk: gradio
|
12 |
+
sdk_version: 4.0.0
|
13 |
+
python_packages:
|
14 |
+
- "torch>=2.0.0"
|
15 |
+
- "transformers>=4.30.0"
|
16 |
+
- "accelerate>=0.20.0"
|
17 |
+
- "numpy>=1.21.0"
|
18 |
+
|
19 |
+
app_file: app.py
|
20 |
+
app_port: 7860
|
21 |
+
|
22 |
+
models:
|
23 |
+
- "Alexis-Az/Math-Problem-LlaMA-3.2-1B-GGUF"
|
24 |
+
- "Alexis-Az/Math-Problem-LlaMA-3.2-1.7B-GGUF"
|
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, pipeline
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from monitoring import PerformanceMonitor, measure_time
|
6 |
+
|
7 |
+
# Model IDs
|
8 |
+
BASE_MODEL_ID = "Alexis-Az/Math-Problem-LlaMA-3.2-1B-GGUF"
|
9 |
+
FINETUNED_MODEL_ID = "Alexis-Az/Math-Problem-LlaMA-3.2-1.7B-GGUF"
|
10 |
+
|
11 |
+
# Initialize performance monitor
|
12 |
+
monitor = PerformanceMonitor()
|
13 |
+
|
14 |
+
def format_prompt(problem):
|
15 |
+
"""Format the input problem according to the model's expected format"""
|
16 |
+
return f"<|im_start|>user\nCan you help me solve this math problem? {problem}<|im_end|>\n"
|
17 |
+
|
18 |
+
@measure_time
|
19 |
+
def get_model_response(problem, model_id):
|
20 |
+
"""Get response from a specific model"""
|
21 |
+
try:
|
22 |
+
# Initialize pipeline
|
23 |
+
pipe = pipeline(
|
24 |
+
"text-generation",
|
25 |
+
model=model_id,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
device_map="auto",
|
28 |
+
)
|
29 |
+
|
30 |
+
# Format prompt and generate response
|
31 |
+
prompt = format_prompt(problem)
|
32 |
+
response = pipe(
|
33 |
+
prompt,
|
34 |
+
max_new_tokens=100,
|
35 |
+
temperature=0.1,
|
36 |
+
top_p=0.95,
|
37 |
+
repetition_penalty=1.15
|
38 |
+
)[0]["generated_text"]
|
39 |
+
|
40 |
+
# Extract assistant's response
|
41 |
+
assistant_response = response.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
|
42 |
+
return assistant_response.strip()
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error: {str(e)}"
|
45 |
+
|
46 |
+
def solve_problem(problem, problem_type):
|
47 |
+
"""Solve a math problem using both models"""
|
48 |
+
if not problem:
|
49 |
+
return "Please enter a problem", "Please enter a problem", None
|
50 |
+
|
51 |
+
# Record problem type
|
52 |
+
monitor.record_problem_type(problem_type)
|
53 |
+
|
54 |
+
# Add problem type context if provided
|
55 |
+
if problem_type != "Custom":
|
56 |
+
problem = f"{problem_type}: {problem}"
|
57 |
+
|
58 |
+
# Get responses from both models with timing
|
59 |
+
base_response, base_time = get_model_response(problem, BASE_MODEL_ID)
|
60 |
+
finetuned_response, finetuned_time = get_model_response(problem, FINETUNED_MODEL_ID)
|
61 |
+
|
62 |
+
# Record response times
|
63 |
+
monitor.record_response_time("base", base_time)
|
64 |
+
monitor.record_response_time("finetuned", finetuned_time)
|
65 |
+
|
66 |
+
# Record success (basic check - no error message)
|
67 |
+
monitor.record_success("base", not base_response.startswith("Error"))
|
68 |
+
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
|
69 |
+
|
70 |
+
# Get updated statistics
|
71 |
+
stats = monitor.get_statistics()
|
72 |
+
|
73 |
+
# Format statistics for display
|
74 |
+
stats_display = f"""
|
75 |
+
### Performance Metrics
|
76 |
+
|
77 |
+
#### Response Times (seconds)
|
78 |
+
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
|
79 |
+
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
|
80 |
+
|
81 |
+
#### Success Rates
|
82 |
+
- Base Model: {stats.get('base_success_rate', 0):.1f}%
|
83 |
+
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
|
84 |
+
|
85 |
+
#### Problem Type Distribution
|
86 |
+
"""
|
87 |
+
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
|
88 |
+
stats_display += f"- {ptype}: {percentage:.1f}%\n"
|
89 |
+
|
90 |
+
return base_response, finetuned_response, stats_display
|
91 |
+
|
92 |
+
# Create Gradio interface
|
93 |
+
with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
94 |
+
gr.Markdown("# Mathematics Problem Solver")
|
95 |
+
gr.Markdown("Compare solutions between base (1B) and fine-tuned (1.7B) models")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
problem_type = gr.Dropdown(
|
100 |
+
choices=["Addition", "Root Finding", "Derivative", "Custom"],
|
101 |
+
value="Custom",
|
102 |
+
label="Problem Type"
|
103 |
+
)
|
104 |
+
problem_input = gr.Textbox(
|
105 |
+
label="Enter your math problem",
|
106 |
+
placeholder="Example: Find the derivative of x^2 + 3x"
|
107 |
+
)
|
108 |
+
solve_btn = gr.Button("Solve", variant="primary")
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
gr.Markdown("### Base Model (1B)")
|
113 |
+
base_output = gr.Textbox(label="Base Model Solution", lines=5)
|
114 |
+
|
115 |
+
with gr.Column():
|
116 |
+
gr.Markdown("### Fine-tuned Model (1.7B)")
|
117 |
+
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
|
118 |
+
|
119 |
+
# Performance metrics display
|
120 |
+
with gr.Row():
|
121 |
+
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
|
122 |
+
|
123 |
+
# Example problems
|
124 |
+
gr.Examples(
|
125 |
+
examples=[
|
126 |
+
["Find the derivative of x^2 + 3x", "Derivative"],
|
127 |
+
["What is the square root of 144?", "Root Finding"],
|
128 |
+
["Calculate 235 + 567", "Addition"],
|
129 |
+
],
|
130 |
+
inputs=[problem_input, problem_type],
|
131 |
+
outputs=[base_output, finetuned_output, metrics_display],
|
132 |
+
fn=solve_problem,
|
133 |
+
cache_examples=True,
|
134 |
+
)
|
135 |
+
|
136 |
+
# Connect the interface
|
137 |
+
solve_btn.click(
|
138 |
+
fn=solve_problem,
|
139 |
+
inputs=[problem_input, problem_type],
|
140 |
+
outputs=[base_output, finetuned_output, metrics_display]
|
141 |
+
)
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
demo.launch()
|
monitoring.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from datetime import datetime
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from collections import defaultdict
|
6 |
+
import threading
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
class PerformanceMonitor:
|
10 |
+
def __init__(self, metrics_file="metrics.json"):
|
11 |
+
self.metrics_file = metrics_file
|
12 |
+
self.metrics = defaultdict(list)
|
13 |
+
self.lock = threading.Lock()
|
14 |
+
self._load_metrics()
|
15 |
+
|
16 |
+
def _load_metrics(self):
|
17 |
+
"""Load existing metrics from file"""
|
18 |
+
if os.path.exists(self.metrics_file):
|
19 |
+
try:
|
20 |
+
with open(self.metrics_file, 'r') as f:
|
21 |
+
self.metrics.update(json.load(f))
|
22 |
+
except json.JSONDecodeError:
|
23 |
+
pass
|
24 |
+
|
25 |
+
def _save_metrics(self):
|
26 |
+
"""Save metrics to file"""
|
27 |
+
with self.lock:
|
28 |
+
with open(self.metrics_file, 'w') as f:
|
29 |
+
json.dump(dict(self.metrics), f)
|
30 |
+
|
31 |
+
def record_response_time(self, model_id, duration):
|
32 |
+
"""Record response time for a model"""
|
33 |
+
with self.lock:
|
34 |
+
self.metrics[f"{model_id}_response_times"].append({
|
35 |
+
'timestamp': datetime.now().isoformat(),
|
36 |
+
'duration': duration
|
37 |
+
})
|
38 |
+
self._save_metrics()
|
39 |
+
|
40 |
+
def record_success(self, model_id, success):
|
41 |
+
"""Record success/failure for a model"""
|
42 |
+
with self.lock:
|
43 |
+
self.metrics[f"{model_id}_success_rate"].append({
|
44 |
+
'timestamp': datetime.now().isoformat(),
|
45 |
+
'success': success
|
46 |
+
})
|
47 |
+
self._save_metrics()
|
48 |
+
|
49 |
+
def record_problem_type(self, problem_type):
|
50 |
+
"""Record usage of different problem types"""
|
51 |
+
with self.lock:
|
52 |
+
self.metrics['problem_types'].append({
|
53 |
+
'timestamp': datetime.now().isoformat(),
|
54 |
+
'type': problem_type
|
55 |
+
})
|
56 |
+
self._save_metrics()
|
57 |
+
|
58 |
+
def get_statistics(self):
|
59 |
+
"""Calculate and return performance statistics"""
|
60 |
+
stats = {}
|
61 |
+
|
62 |
+
# Response time statistics
|
63 |
+
for model in ['base', 'finetuned']:
|
64 |
+
times = [x['duration'] for x in self.metrics.get(f"{model}_response_times", [])]
|
65 |
+
if times:
|
66 |
+
stats[f"{model}_avg_response_time"] = np.mean(times)
|
67 |
+
stats[f"{model}_max_response_time"] = np.max(times)
|
68 |
+
stats[f"{model}_min_response_time"] = np.min(times)
|
69 |
+
|
70 |
+
# Success rate statistics
|
71 |
+
for model in ['base', 'finetuned']:
|
72 |
+
successes = [x['success'] for x in self.metrics.get(f"{model}_success_rate", [])]
|
73 |
+
if successes:
|
74 |
+
stats[f"{model}_success_rate"] = sum(successes) / len(successes) * 100
|
75 |
+
|
76 |
+
# Problem type distribution
|
77 |
+
problem_types = [x['type'] for x in self.metrics.get('problem_types', [])]
|
78 |
+
if problem_types:
|
79 |
+
type_counts = defaultdict(int)
|
80 |
+
for ptype in problem_types:
|
81 |
+
type_counts[ptype] += 1
|
82 |
+
total = len(problem_types)
|
83 |
+
stats['problem_type_distribution'] = {
|
84 |
+
ptype: (count / total) * 100
|
85 |
+
for ptype, count in type_counts.items()
|
86 |
+
}
|
87 |
+
|
88 |
+
return stats
|
89 |
+
|
90 |
+
def measure_time(func):
|
91 |
+
"""Decorator to measure function execution time"""
|
92 |
+
def wrapper(*args, **kwargs):
|
93 |
+
start_time = time.time()
|
94 |
+
result = func(*args, **kwargs)
|
95 |
+
duration = time.time() - start_time
|
96 |
+
return result, duration
|
97 |
+
return wrapper
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies
|
2 |
+
gradio>=4.0.0
|
3 |
+
torch>=2.0.0
|
4 |
+
transformers>=4.30.0
|
5 |
+
accelerate>=0.20.0
|
6 |
+
numpy>=1.21.0
|
7 |
+
|
8 |
+
# Testing dependencies
|
9 |
+
pytest>=7.0.0
|
10 |
+
pytest-cov>=4.0.0
|
11 |
+
pytest-mock>=3.10.0
|