Spaces:
Sleeping
Sleeping
feat: switch to single model with dropdown selection
Browse files
app.py
CHANGED
@@ -5,8 +5,10 @@ import numpy as np
|
|
5 |
from monitoring import PerformanceMonitor, measure_time
|
6 |
|
7 |
# Model IDs
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
# Initialize performance monitor
|
12 |
monitor = PerformanceMonitor()
|
@@ -43,10 +45,10 @@ def get_model_response(problem, model_id):
|
|
43 |
except Exception as e:
|
44 |
return f"Error: {str(e)}"
|
45 |
|
46 |
-
def solve_problem(problem, problem_type):
|
47 |
-
"""Solve a math problem using
|
48 |
if not problem:
|
49 |
-
return "Please enter a problem",
|
50 |
|
51 |
# Record problem type
|
52 |
monitor.record_problem_type(problem_type)
|
@@ -55,30 +57,21 @@ def solve_problem(problem, problem_type):
|
|
55 |
if problem_type != "Custom":
|
56 |
problem = f"{problem_type}: {problem}"
|
57 |
|
58 |
-
# Get
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
# Format
|
63 |
-
|
64 |
|
65 |
Let's verify this step by step:
|
66 |
1. Starting with f(x) = {problem}
|
67 |
2. Applying differentiation rules
|
68 |
-
3. We get f'(x) = {
|
69 |
-
|
70 |
-
finetuned_output = f"""Solution: {finetuned_response}
|
71 |
-
|
72 |
-
Let's verify this step by step:
|
73 |
-
1. Starting with f(x) = {problem}
|
74 |
-
2. Applying differentiation rules
|
75 |
-
3. We get f'(x) = {finetuned_response}"""
|
76 |
|
77 |
# Record metrics
|
78 |
-
monitor.record_response_time(
|
79 |
-
monitor.
|
80 |
-
monitor.record_success("base", not base_response.startswith("Error"))
|
81 |
-
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
|
82 |
|
83 |
# Get updated statistics
|
84 |
stats = monitor.get_statistics()
|
@@ -88,24 +81,22 @@ Let's verify this step by step:
|
|
88 |
### Performance Metrics
|
89 |
|
90 |
#### Response Times (seconds)
|
91 |
-
-
|
92 |
-
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
|
93 |
|
94 |
#### Success Rates
|
95 |
-
-
|
96 |
-
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
|
97 |
|
98 |
#### Problem Types Used
|
99 |
"""
|
100 |
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
|
101 |
stats_display += f"- {ptype}: {percentage:.1f}%\n"
|
102 |
|
103 |
-
return
|
104 |
|
105 |
# Create Gradio interface
|
106 |
with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
107 |
gr.Markdown("# Mathematics Problem Solver")
|
108 |
-
gr.Markdown("
|
109 |
|
110 |
with gr.Row():
|
111 |
with gr.Column():
|
@@ -114,6 +105,11 @@ with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
|
114 |
value="Derivative",
|
115 |
label="Problem Type"
|
116 |
)
|
|
|
|
|
|
|
|
|
|
|
117 |
problem_input = gr.Textbox(
|
118 |
label="Enter your math problem",
|
119 |
placeholder="Example: x^2 + 3x"
|
@@ -121,13 +117,7 @@ with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
|
121 |
solve_btn = gr.Button("Solve", variant="primary")
|
122 |
|
123 |
with gr.Row():
|
124 |
-
|
125 |
-
gr.Markdown("### Base Model")
|
126 |
-
base_output = gr.Textbox(label="Base Model Solution", lines=5)
|
127 |
-
|
128 |
-
with gr.Column():
|
129 |
-
gr.Markdown("### Fine-tuned Model")
|
130 |
-
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
|
131 |
|
132 |
# Performance metrics display
|
133 |
with gr.Row():
|
@@ -136,17 +126,17 @@ with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
|
136 |
# Example problems
|
137 |
gr.Examples(
|
138 |
examples=[
|
139 |
-
["x^2 + 3x", "Derivative"],
|
140 |
-
["144", "Root Finding"],
|
141 |
-
["235 + 567", "Addition"],
|
142 |
-
["\\sin{\\left(x\\right)}", "Derivative"],
|
143 |
-
["e^x", "Derivative"],
|
144 |
-
["\\frac{1}{x}", "Derivative"],
|
145 |
-
["x^3 + 2x", "Derivative"],
|
146 |
-
["\\cos{\\left(x^2\\right)}", "Derivative"]
|
147 |
],
|
148 |
-
inputs=[problem_input, problem_type],
|
149 |
-
outputs=[
|
150 |
fn=solve_problem,
|
151 |
cache_examples=True,
|
152 |
)
|
@@ -154,8 +144,8 @@ with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
|
154 |
# Connect the interface
|
155 |
solve_btn.click(
|
156 |
fn=solve_problem,
|
157 |
-
inputs=[problem_input, problem_type],
|
158 |
-
outputs=[
|
159 |
)
|
160 |
|
161 |
if __name__ == "__main__":
|
|
|
5 |
from monitoring import PerformanceMonitor, measure_time
|
6 |
|
7 |
# Model IDs
|
8 |
+
MODEL_OPTIONS = {
|
9 |
+
"Base Model": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
10 |
+
"Fine-tuned Model": "Joash2024/Math-SmolLM2-1.7B"
|
11 |
+
}
|
12 |
|
13 |
# Initialize performance monitor
|
14 |
monitor = PerformanceMonitor()
|
|
|
45 |
except Exception as e:
|
46 |
return f"Error: {str(e)}"
|
47 |
|
48 |
+
def solve_problem(problem, problem_type, model_type):
|
49 |
+
"""Solve a math problem using the selected model"""
|
50 |
if not problem:
|
51 |
+
return "Please enter a problem", None
|
52 |
|
53 |
# Record problem type
|
54 |
monitor.record_problem_type(problem_type)
|
|
|
57 |
if problem_type != "Custom":
|
58 |
problem = f"{problem_type}: {problem}"
|
59 |
|
60 |
+
# Get response from selected model
|
61 |
+
model_id = MODEL_OPTIONS[model_type]
|
62 |
+
response, time_taken = get_model_response(problem, model_id)
|
63 |
|
64 |
+
# Format response with steps
|
65 |
+
output = f"""Solution: {response}
|
66 |
|
67 |
Let's verify this step by step:
|
68 |
1. Starting with f(x) = {problem}
|
69 |
2. Applying differentiation rules
|
70 |
+
3. We get f'(x) = {response}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Record metrics
|
73 |
+
monitor.record_response_time(model_type, time_taken)
|
74 |
+
monitor.record_success(model_type, not response.startswith("Error"))
|
|
|
|
|
75 |
|
76 |
# Get updated statistics
|
77 |
stats = monitor.get_statistics()
|
|
|
81 |
### Performance Metrics
|
82 |
|
83 |
#### Response Times (seconds)
|
84 |
+
- {model_type}: {stats.get(f'{model_type}_avg_response_time', 0):.2f} avg
|
|
|
85 |
|
86 |
#### Success Rates
|
87 |
+
- {model_type}: {stats.get(f'{model_type}_success_rate', 0):.1f}%
|
|
|
88 |
|
89 |
#### Problem Types Used
|
90 |
"""
|
91 |
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
|
92 |
stats_display += f"- {ptype}: {percentage:.1f}%\n"
|
93 |
|
94 |
+
return output, stats_display
|
95 |
|
96 |
# Create Gradio interface
|
97 |
with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
98 |
gr.Markdown("# Mathematics Problem Solver")
|
99 |
+
gr.Markdown("Test our models on mathematical problems")
|
100 |
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
|
|
105 |
value="Derivative",
|
106 |
label="Problem Type"
|
107 |
)
|
108 |
+
model_type = gr.Dropdown(
|
109 |
+
choices=list(MODEL_OPTIONS.keys()),
|
110 |
+
value="Fine-tuned Model",
|
111 |
+
label="Model to Use"
|
112 |
+
)
|
113 |
problem_input = gr.Textbox(
|
114 |
label="Enter your math problem",
|
115 |
placeholder="Example: x^2 + 3x"
|
|
|
117 |
solve_btn = gr.Button("Solve", variant="primary")
|
118 |
|
119 |
with gr.Row():
|
120 |
+
solution_output = gr.Textbox(label="Solution", lines=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# Performance metrics display
|
123 |
with gr.Row():
|
|
|
126 |
# Example problems
|
127 |
gr.Examples(
|
128 |
examples=[
|
129 |
+
["x^2 + 3x", "Derivative", "Fine-tuned Model"],
|
130 |
+
["144", "Root Finding", "Fine-tuned Model"],
|
131 |
+
["235 + 567", "Addition", "Fine-tuned Model"],
|
132 |
+
["\\sin{\\left(x\\right)}", "Derivative", "Fine-tuned Model"],
|
133 |
+
["e^x", "Derivative", "Fine-tuned Model"],
|
134 |
+
["\\frac{1}{x}", "Derivative", "Fine-tuned Model"],
|
135 |
+
["x^3 + 2x", "Derivative", "Fine-tuned Model"],
|
136 |
+
["\\cos{\\left(x^2\\right)}", "Derivative", "Fine-tuned Model"]
|
137 |
],
|
138 |
+
inputs=[problem_input, problem_type, model_type],
|
139 |
+
outputs=[solution_output, metrics_display],
|
140 |
fn=solve_problem,
|
141 |
cache_examples=True,
|
142 |
)
|
|
|
144 |
# Connect the interface
|
145 |
solve_btn.click(
|
146 |
fn=solve_problem,
|
147 |
+
inputs=[problem_input, problem_type, model_type],
|
148 |
+
outputs=[solution_output, metrics_display]
|
149 |
)
|
150 |
|
151 |
if __name__ == "__main__":
|