Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,601 Bytes
09fa6ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
import torch
import spaces
from diffusers import DiffusionPipeline
import gc
import subprocess
subprocess.run('pip cache purge', shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)
models = ["camenduru/FLUX.1-dev-diffusers",
"black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged",
"John6666/blue-pencil-flux1-v001-fp8-flux",
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
"John6666/nepotism-fuxdevschnell-v3aio-flux"
]
def clear_cache():
torch.cuda.empty_cache()
gc.collect()
def get_repo_safetensors(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
try:
if " " in repo_id or not api.repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info. ")
print(e)
return gr.update(choices=[])
files = [f for f in files if f.endswith(".safetensors")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
def change_base_model(repo_id: str):
from huggingface_hub import HfApi
global pipe
api = HfApi()
try:
if " " in repo_id or not api.repo_exists(repo_id): return
clear_cache()
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
except Exception as e:
print(e)
|