File size: 11,535 Bytes
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ae97f
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6322fa2
635b226
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import spaces
import os
import gradio as gr
import json
import logging
logging.getLogger("diffusers").setLevel(logging.ERROR)
import diffusers
diffusers.utils.logging.set_verbosity(40)
import warnings
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
from pathlib import Path
from env import (hf_token, hf_read_token, # to use only for private repos
    CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2, HF_LORA_ESSENTIAL_PRIVATE_REPO,
    HF_VAE_PRIVATE_REPO, directory_models, directory_loras, directory_vaes,
    download_model_list, download_lora_list, download_vae_list)
from modutils import (to_list, list_uniq, list_sub, get_lora_model_list, download_private_repo,
    safe_float, escape_lora_basename, to_lora_key, to_lora_path, get_local_model_list,
    get_private_lora_model_lists, get_valid_lora_name, get_valid_lora_path, get_valid_lora_wt,
    get_lora_info, normalize_prompt_list, get_civitai_info, search_lora_on_civitai)


def download_things(directory, url, hf_token="", civitai_api_key=""):
    url = url.strip()
    
    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        # url = urllib.parse.quote(url, safe=':/')  # fix encoding
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
        user_header = f'"Authorization: Bearer {hf_token}"'
        if hf_token:
            os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("\033[91mYou need an API key to download Civitai models.\033[0m")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")


def get_model_list(directory_path):
    model_list = []
    valid_extensions = {'.ckpt' , '.pt', '.pth', '.safetensors', '.bin'}

    for filename in os.listdir(directory_path):
        if os.path.splitext(filename)[1] in valid_extensions:
            name_without_extension = os.path.splitext(filename)[0]
            file_path = os.path.join(directory_path, filename)
            # model_list.append((name_without_extension, file_path))
            model_list.append(file_path)
            print('\033[34mFILE: ' + file_path + '\033[0m')
    return model_list


# - **Download Models**
download_model = ", ".join(download_model_list)
# - **Download VAEs**
download_vae = ", ".join(download_vae_list)
# - **Download LoRAs**
download_lora = ", ".join(download_lora_list)

#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
#download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)

CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
hf_token = os.environ.get("HF_TOKEN")

# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
    if not os.path.exists(f"./models/{url.split('/')[-1]}"):
        download_things(directory_models, url, hf_token, CIVITAI_API_KEY)
for url in [url.strip() for url in download_vae.split(',')]:
    if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
        download_things(directory_vaes, url, hf_token, CIVITAI_API_KEY)
for url in [url.strip() for url in download_lora.split(',')]:
    if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
        download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)

lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(directory_vaes)
vae_model_list.insert(0, "None")


def get_t2i_model_info(repo_id: str):
    from huggingface_hub import HfApi
    api = HfApi()
    try:
        if " " in repo_id or not api.repo_exists(repo_id): return ""
        model = api.model_info(repo_id=repo_id)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info. ")
        print(e)
        return ""
    if model.private or model.gated: return ""
    tags = model.tags
    info = []
    url = f"https://huggingface.co/{repo_id}/"
    if not 'diffusers' in tags: return ""
    if 'diffusers:FluxPipeline' in tags:
        info.append("FLUX.1")
    elif 'diffusers:StableDiffusionXLPipeline' in tags:
        info.append("SDXL")
    elif 'diffusers:StableDiffusionPipeline' in tags:
        info.append("SD1.5")
    if model.card_data and model.card_data.tags:
        info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
    info.append(f"DLs: {model.downloads}")
    info.append(f"likes: {model.likes}")
    info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
    md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
    return gr.update(value=md)


private_lora_dict = {"": ["", "", "", "", ""]}
try:
    with open('lora_dict.json', encoding='utf-8') as f:
        d = json.load(f)
        for k, v in d.items():
            private_lora_dict[escape_lora_basename(k)] = v
except Exception:
    pass


private_lora_model_list = get_private_lora_model_lists()
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
civitai_lora_last_results = {}  # {"URL to download": {search results}, ...}
all_lora_list = []


def get_all_lora_list():
    global all_lora_list
    loras = get_lora_model_list()
    all_lora_list = loras.copy()
    return loras


def get_all_lora_tupled_list():
    global loras_dict
    models = get_all_lora_list()
    if not models: return []
    tupled_list = []
    for model in models:
        #if not model: continue # to avoid GUI-related bug
        basename = Path(model).stem
        key = to_lora_key(model)
        items = None
        if key in loras_dict.keys():
            items = loras_dict.get(key, None)
        else:
            items = get_civitai_info(model)
            if items != None:
                loras_dict[key] = items
        name = basename
        value = model
        if items and items[2] != "":
            if items[1] == "Pony":
                name = f"{basename} (for {items[1]}🐴, {items[2]})"
            else:
                name = f"{basename} (for {items[1]}, {items[2]})"
        tupled_list.append((name, value))
    return tupled_list


def update_lora_dict(path: str):
    global loras_dict
    key = to_lora_key(path)
    if key in loras_dict.keys(): return
    items = get_civitai_info(path)
    if items == None: return
    loras_dict[key] = items


def download_lora(dl_urls: str):
    global loras_url_to_path_dict
    dl_path = ""
    before = get_local_model_list(directory_loras)
    urls = []
    for url in [url.strip() for url in dl_urls.split(',')]:
        local_path = f"{directory_loras}/{url.split('/')[-1]}"
        if not Path(local_path).exists():
            download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)
            urls.append(url)
    after = get_local_model_list(directory_loras)
    new_files = list_sub(after, before)
    for i, file in enumerate(new_files):
        path = Path(file)
        if path.exists():
            new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
            path.resolve().rename(new_path.resolve())
            loras_url_to_path_dict[urls[i]] = str(new_path)
            update_lora_dict(str(new_path))
            dl_path = str(new_path)
    return dl_path


def copy_lora(path: str, new_path: str):
    import shutil
    if path == new_path: return new_path
    cpath = Path(path)
    npath = Path(new_path)
    if cpath.exists():
        try:
            shutil.copy(str(cpath.resolve()), str(npath.resolve()))
        except Exception:
            return None
        update_lora_dict(str(npath))
        return new_path
    else:
        return None


def download_my_lora(dl_urls: str, lora):
    path = download_lora(dl_urls)
    if path: lora = path
    choices = get_all_lora_tupled_list()
    return gr.update(value=lora, choices=choices)


def apply_lora_prompt(lora_info: str):
    if lora_info == "None": return ""
    lora_tag = lora_info.replace("/",",")
    lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
    lora_prompts = normalize_prompt_list(lora_tags)
    prompt = ", ".join(list_uniq(lora_prompts))
    return prompt


def update_loras(prompt, lora, lora_wt):
    on, label, tag, md = get_lora_info(lora)
    choices = get_all_lora_tupled_list()
    return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\
     gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on)


def search_civitai_lora(query, base_model):
    global civitai_lora_last_results
    items = search_lora_on_civitai(query, base_model)
    if not items: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
    civitai_lora_last_results = {}
    choices = []
    for item in items:
        base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
        name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
        value = item['dl_url']
        choices.append((name, value))
        civitai_lora_last_results[value] = item
    if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
    result = civitai_lora_last_results.get(choices[0][1], "None")
    md = result['md'] if result else ""
    return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
          gr.update(visible=True), gr.update(visible=True)


def select_civitai_lora(search_result):
    if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
    result = civitai_lora_last_results.get(search_result, "None")
    md = result['md'] if result else ""
    return gr.update(value=search_result), gr.update(value=md, visible=True)


def search_civitai_lora_json(query, base_model):
    results = {}
    items = search_lora_on_civitai(query, base_model)
    if not items: return gr.update(value=results)
    for item in items:
        results[item['dl_url']] = item
    return gr.update(value=results)