John6666's picture
Upload app.py
c68697f verified
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from gradio_imageslider import ImageSlider
from PIL import Image, ImageDraw, ImageFont
dtype = torch.bfloat16
#model_id = "black-forest-labs/FLUX.1-dev"
model_id = "camenduru/FLUX.1-dev-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
#taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
#pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
def get_cmp_image(im1: Image.Image, im2: Image.Image, sigmas: float):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1.convert('RGB'), (0, 0))
dst.paste(im2.convert('RGB'), (im1.width, 0))
font = ImageFont.truetype('Roboto-Regular.ttf', 72, encoding='unic')
draw = ImageDraw.Draw(dst)
draw.text((64, im1.height - 128), 'Default Flux', 'red', font=font)
draw.text((im1.width + 64, im1.height - 128), f'Sigmas * factor {sigmas}', 'red', font=font)
return dst
@spaces.GPU(duration=90)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, mul_sigmas=0.95, is_cmp=True, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
sigmas = sigmas * mul_sigmas
image_sigmas = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
sigmas=sigmas
).images[0]
if is_cmp:
image_def = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
).images[0]
return [image_def, image_sigmas], get_cmp_image(image_def, image_sigmas, mul_sigmas), seed
else: return [image_sigmas, image_sigmas], None, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev] sigmas test
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
#result = gr.Image(label="Result", show_label=False)
result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink")
result_cmp = gr.Image(label="Result (comparing)", show_label=False, type="pil", format="png", height=256, show_download_button=True, show_share_button=False)
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
sigmas = gr.Slider(
label="Sigmas",
minimum=0,
maximum=1.0,
step=0.01,
value=0.95,
)
is_cmp = gr.Checkbox(label="Compare images with/without sigmas", value=True)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=9119,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, result_cmp, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sigmas, is_cmp],
outputs = [result, result_cmp, seed]
)
demo.launch()