John6666 commited on
Commit
7874817
·
verified ·
1 Parent(s): 9b104c4

Upload 4 files

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +43 -26
  3. requirements.txt +1 -1
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: FLUX.1 [dev]
3
  emoji: 🖥️
4
  colorFrom: yellow
5
  colorTo: pink
 
1
  ---
2
+ title: FLUX.1 [dev] sigmas test
3
  emoji: 🖥️
4
  colorFrom: yellow
5
  colorTo: pink
app.py CHANGED
@@ -7,13 +7,14 @@ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, Autoe
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
  from gradio_imageslider import ImageSlider
 
10
 
11
  dtype = torch.bfloat16
12
  #model_id = "black-forest-labs/FLUX.1-dev"
13
  model_id = "camenduru/FLUX.1-dev-diffusers"
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
 
16
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
17
  good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
18
  #pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
19
  pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device)
@@ -24,23 +25,24 @@ MAX_IMAGE_SIZE = 2048
24
 
25
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
26
 
 
 
 
 
 
 
 
 
 
27
  @spaces.GPU(duration=90)
28
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, sigmas=0.95, progress=gr.Progress(track_tqdm=True)):
29
  if randomize_seed:
30
  seed = random.randint(0, MAX_SEED)
31
  generator = torch.Generator().manual_seed(seed)
32
 
33
- #for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
34
- image_def = pipe(
35
- prompt=prompt,
36
- guidance_scale=guidance_scale,
37
- num_inference_steps=num_inference_steps,
38
- width=width,
39
- height=height,
40
- generator=generator,
41
- output_type="pil",
42
- ).images[0]
43
- # yield img, seed
44
  image_sigmas = pipe(
45
  prompt=prompt,
46
  guidance_scale=guidance_scale,
@@ -49,10 +51,22 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
49
  height=height,
50
  generator=generator,
51
  output_type="pil",
52
- mul_sigmas=sigmas
53
  ).images[0]
54
- return [image_def, image_sigmas], seed
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  examples = [
57
  "a tiny astronaut hatching from an egg on the moon",
58
  "a cat holding a sign that says hello world",
@@ -87,16 +101,19 @@ with gr.Blocks(css=css) as demo:
87
  run_button = gr.Button("Run", scale=0)
88
 
89
  #result = gr.Image(label="Result", show_label=False)
90
- result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink")
 
91
 
92
  with gr.Accordion("Advanced Settings", open=True):
93
- sigmas = gr.Slider(
94
- label="Sigmas",
95
- minimum=0,
96
- maximum=1.0,
97
- step=0.01,
98
- value=0.95,
99
- )
 
 
100
 
101
  seed = gr.Slider(
102
  label="Seed",
@@ -148,15 +165,15 @@ with gr.Blocks(css=css) as demo:
148
  examples = examples,
149
  fn = infer,
150
  inputs = [prompt],
151
- outputs = [result, seed],
152
  cache_examples="lazy"
153
  )
154
 
155
  gr.on(
156
  triggers=[run_button.click, prompt.submit],
157
  fn = infer,
158
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sigmas],
159
- outputs = [result, seed]
160
  )
161
 
162
  demo.launch()
 
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
  from gradio_imageslider import ImageSlider
10
+ from PIL import Image, ImageDraw
11
 
12
  dtype = torch.bfloat16
13
  #model_id = "black-forest-labs/FLUX.1-dev"
14
  model_id = "camenduru/FLUX.1-dev-diffusers"
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
 
17
+ #taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
18
  good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
19
  #pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
20
  pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device)
 
25
 
26
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
27
 
28
+ def get_cmp_image(im1: Image.Image, im2: Image.Image, sigmas: float):
29
+ dst = Image.new('RGB', (im1.width + im2.width, im1.height))
30
+ dst.paste(im1.convert('RGB'), (0, 0))
31
+ dst.paste(im2.convert('RGB'), (im1.width, 0))
32
+ draw = ImageDraw.Draw(dst)
33
+ draw.text((64, 64), 'Sigmas: 1.0', 'red')
34
+ draw.text((im1.width + 64, 64), f'Sigmas: {sigmas}', 'red')
35
+ return dst
36
+
37
  @spaces.GPU(duration=90)
38
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, mul_sigmas=0.95, is_cmp=True, progress=gr.Progress(track_tqdm=True)):
39
  if randomize_seed:
40
  seed = random.randint(0, MAX_SEED)
41
  generator = torch.Generator().manual_seed(seed)
42
 
43
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
44
+ sigmas = sigmas * mul_sigmas
45
+
 
 
 
 
 
 
 
 
46
  image_sigmas = pipe(
47
  prompt=prompt,
48
  guidance_scale=guidance_scale,
 
51
  height=height,
52
  generator=generator,
53
  output_type="pil",
54
+ sigmas=sigmas
55
  ).images[0]
 
56
 
57
+ if is_cmp:
58
+ image_def = pipe(
59
+ prompt=prompt,
60
+ guidance_scale=guidance_scale,
61
+ num_inference_steps=num_inference_steps,
62
+ width=width,
63
+ height=height,
64
+ generator=generator,
65
+ output_type="pil",
66
+ ).images[0]
67
+ return [image_def, image_sigmas], get_cmp_image(image_def, image_sigmas), seed
68
+ else: return [image_sigmas, image_sigmas], None, seed
69
+
70
  examples = [
71
  "a tiny astronaut hatching from an egg on the moon",
72
  "a cat holding a sign that says hello world",
 
101
  run_button = gr.Button("Run", scale=0)
102
 
103
  #result = gr.Image(label="Result", show_label=False)
104
+ result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink", format="png")
105
+ result_cmp = gr.Image(label="Result (comparing)", show_label=False, type="pil", format="png", height=256)
106
 
107
  with gr.Accordion("Advanced Settings", open=True):
108
+ with gr.Row():
109
+ sigmas = gr.Slider(
110
+ label="Sigmas",
111
+ minimum=0,
112
+ maximum=1.0,
113
+ step=0.01,
114
+ value=0.95,
115
+ )
116
+ is_cmp = gr.Checkbox("Compare images with/without sigmas")
117
 
118
  seed = gr.Slider(
119
  label="Seed",
 
165
  examples = examples,
166
  fn = infer,
167
  inputs = [prompt],
168
+ outputs = [result, result_cmp, seed],
169
  cache_examples="lazy"
170
  )
171
 
172
  gr.on(
173
  triggers=[run_button.click, prompt.submit],
174
  fn = infer,
175
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sigmas, is_cmp],
176
+ outputs = [result, result_cmp, seed]
177
  )
178
 
179
  demo.launch()
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
  accelerate
2
  #git+https://github.com/huggingface/diffusers.git
3
- git+https://github.com/huggingface/diffusers.git@6b1c4a766b7f83fe06ddb9bbb58c1122072efefe
4
  torch
5
  transformers==4.42.4
6
  xformers
 
1
  accelerate
2
  #git+https://github.com/huggingface/diffusers.git
3
+ #git+https://github.com/huggingface/diffusers.git@6b1c4a766b7f83fe06ddb9bbb58c1122072efefegit+https://github.com/huggingface/diffusers.git@ad3344e2be033887d854d2731757db8b80dcfb06
4
  torch
5
  transformers==4.42.4
6
  xformers