John6666 commited on
Commit
9add311
Β·
verified Β·
1 Parent(s): 5f0104b

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +34 -45
  3. multit2i.py +39 -16
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🌐🌊
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.40.0
8
  app_file: app.py
9
  short_description: Text-to-Image
10
  license: mit
 
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.42.0
8
  app_file: app.py
9
  short_description: Text-to-Image
10
  license: mit
app.py CHANGED
@@ -1,24 +1,18 @@
1
  import gradio as gr
2
  from model import models
3
- from multit2i import (
4
- load_models, infer_fn, infer_rand_fn, save_gallery,
5
  change_model, warm_model, get_model_info_md, loaded_models,
6
  get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
7
- get_recom_prompt_type, set_recom_prompt_preset, get_tag_type,
8
- )
9
- from tagger.tagger import (
10
- predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
11
- insert_recom_prompt, compose_prompt_to_copy,
12
- )
13
  from tagger.fl2sd3longcap import predict_tags_fl2_sd3
14
  from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
15
- from tagger.utils import (
16
- V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
17
- V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS,
18
- )
19
-
20
 
21
  max_images = 8
 
22
  load_models(models)
23
 
24
  css = """
@@ -51,10 +45,13 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
51
  prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
52
  neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
53
  with gr.Accordion("Advanced options", open=False):
54
- width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
55
- height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
56
- steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
57
- cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
 
 
 
58
  with gr.Accordion("Recommended Prompt", open=False):
59
  recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
60
  with gr.Row():
@@ -63,12 +60,14 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
63
  negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
64
  negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
65
  with gr.Accordion("Prompt Transformer", open=False):
66
- v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
67
- v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
68
- v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
69
- v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
70
- v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
71
- v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
 
 
72
  v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
73
  v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
74
  image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
@@ -115,13 +114,13 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
115
  img_i = gr.Number(i, visible=False)
116
  image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
117
  gen_event = gr.on(triggers=[run_button.click, prompt.submit],
118
- fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
119
- inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
120
  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
121
  outputs=[o], queue=True, show_api=False)
122
  gen_event2 = gr.on(triggers=[random_button.click],
123
- fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
124
- inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
125
  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
126
  outputs=[o], queue=True, show_api=False)
127
  o.change(save_gallery, [o, results], [results, image_files], show_api=False)
@@ -135,29 +134,19 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
135
  random_prompt.click(
136
  v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
137
  v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
138
- ).success(
139
- get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
140
- ).success(
141
- convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False,
142
- )
143
- tagger_generate_from_image.click(
144
- lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
145
  ).success(
146
  predict_tags_wd,
147
  [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
148
  [v2_series, v2_character, prompt, v2_copy],
149
  show_api=False,
150
- ).success(
151
- predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
152
- ).success(
153
- remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
154
- ).success(
155
- convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
156
- ).success(
157
- insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
158
- ).success(
159
- compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False,
160
- )
161
 
162
  demo.queue()
163
  demo.launch()
 
1
  import gradio as gr
2
  from model import models
3
+ from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
 
4
  change_model, warm_model, get_model_info_md, loaded_models,
5
  get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
6
+ get_recom_prompt_type, set_recom_prompt_preset, get_tag_type)
7
+ from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
8
+ insert_recom_prompt, compose_prompt_to_copy)
 
 
 
9
  from tagger.fl2sd3longcap import predict_tags_fl2_sd3
10
  from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
11
+ from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
12
+ V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
 
 
 
13
 
14
  max_images = 8
15
+ MAX_SEED = 2**32-1
16
  load_models(models)
17
 
18
  css = """
 
45
  prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
46
  neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
47
  with gr.Accordion("Advanced options", open=False):
48
+ with gr.Row():
49
+ width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
50
+ height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
51
+ with gr.Row():
52
+ steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
53
+ cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
54
+ seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
55
  with gr.Accordion("Recommended Prompt", open=False):
56
  recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
57
  with gr.Row():
 
60
  negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
61
  negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
62
  with gr.Accordion("Prompt Transformer", open=False):
63
+ with gr.Row():
64
+ v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
65
+ v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
66
+ v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
67
+ with gr.Row():
68
+ v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
69
+ v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
70
+ v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
71
  v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
72
  v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
73
  image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
 
114
  img_i = gr.Number(i, visible=False)
115
  image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
116
  gen_event = gr.on(triggers=[run_button.click, prompt.submit],
117
+ fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
118
+ inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
119
  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
120
  outputs=[o], queue=True, show_api=False)
121
  gen_event2 = gr.on(triggers=[random_button.click],
122
+ fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
123
+ inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
124
  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
125
  outputs=[o], queue=True, show_api=False)
126
  o.change(save_gallery, [o, results], [results, image_files], show_api=False)
 
134
  random_prompt.click(
135
  v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
136
  v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
137
+ ).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
138
+ ).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
139
+ tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
 
 
 
 
140
  ).success(
141
  predict_tags_wd,
142
  [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
143
  [v2_series, v2_character, prompt, v2_copy],
144
  show_api=False,
145
+ ).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
146
+ ).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
147
+ ).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
148
+ ).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
149
+ ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
 
 
 
 
 
 
150
 
151
  demo.queue()
152
  demo.launch()
multit2i.py CHANGED
@@ -6,7 +6,7 @@ from huggingface_hub import InferenceClient
6
  import os
7
 
8
 
9
- HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
10
  server_timeout = 600
11
  inference_timeout = 300
12
 
@@ -33,22 +33,43 @@ def is_repo_name(s):
33
  return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
34
 
35
 
36
- def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  from huggingface_hub import HfApi
38
  api = HfApi()
39
  default_tags = ["diffusers"]
40
  if not sort: sort = "last_modified"
 
41
  models = []
42
  try:
43
- model_infos = api.list_models(author=author, pipeline_tag="text-to-image", token=HF_TOKEN,
44
- tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
45
  except Exception as e:
46
  print(f"Error: Failed to list models.")
47
  print(e)
48
  return models
49
  for model in model_infos:
50
- if not model.private and not model.gated and HF_TOKEN is None:
51
- if not_tag and not_tag in model.tags: continue
 
52
  models.append(model.id)
53
  if len(models) == limit: break
54
  return models
@@ -333,13 +354,14 @@ def warm_model(model_name: str):
333
  # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
334
  def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
335
  height: int | None = None, width: int | None = None,
336
- steps: int | None = None, cfg: int | None = None):
337
  png_path = "image.png"
338
  kwargs = {}
339
  if height is not None and height >= 256: kwargs["height"] = height
340
  if width is not None and width >= 256: kwargs["width"] = width
341
  if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
342
  if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
 
343
  try:
344
  if isinstance(client, InferenceClient):
345
  image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
@@ -355,17 +377,18 @@ def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt:
355
 
356
  async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
357
  height: int | None = None, width: int | None = None,
358
- steps: int | None = None, cfg: int | None = None,
359
  save_path: str | None = None, timeout: float = inference_timeout):
360
  import random
361
  noise = ""
362
- rand = random.randint(1, 500)
363
- for i in range(rand):
364
- noise += " "
 
365
  model = load_model(model_name)
366
  if not model: return None
367
  task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
368
- height, width, steps, cfg))
369
  await asyncio.sleep(0)
370
  try:
371
  result = await asyncio.wait_for(task, timeout=timeout)
@@ -382,7 +405,7 @@ async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
382
 
383
 
384
  def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
385
- width: int | None = None, steps: int | None = None, cfg: int | None = None,
386
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
387
  if model_name == 'NA':
388
  return None
@@ -390,7 +413,7 @@ def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height
390
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
391
  loop = asyncio.new_event_loop()
392
  result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
393
- steps, cfg, save_path, inference_timeout))
394
  except (Exception, asyncio.CancelledError) as e:
395
  print(e)
396
  print(f"Task aborted: {model_name}")
@@ -401,7 +424,7 @@ def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height
401
 
402
 
403
  def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
404
- width: int | None = None, steps: int | None = None, cfg: int | None = None,
405
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
406
  import random
407
  if model_name_dummy == 'NA':
@@ -412,7 +435,7 @@ def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = N
412
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
413
  loop = asyncio.new_event_loop()
414
  result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
415
- steps, cfg, save_path, inference_timeout))
416
  except (Exception, asyncio.CancelledError) as e:
417
  print(e)
418
  print(f"Task aborted: {model_name}")
 
6
  import os
7
 
8
 
9
+ HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
10
  server_timeout = 600
11
  inference_timeout = 300
12
 
 
33
  return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
34
 
35
 
36
+ def get_status(model_name: str):
37
+ from huggingface_hub import InferenceClient
38
+ client = InferenceClient(timeout=10)
39
+ return client.get_model_status(model_name)
40
+
41
+
42
+ def is_loadable(model_name: str, force_gpu: bool = False):
43
+ try:
44
+ status = get_status(model_name)
45
+ except Exception as e:
46
+ print(e)
47
+ print(f"Couldn't load {model_name}.")
48
+ return False
49
+ gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
50
+ if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
51
+ print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
52
+ return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
53
+
54
+
55
+ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
56
  from huggingface_hub import HfApi
57
  api = HfApi()
58
  default_tags = ["diffusers"]
59
  if not sort: sort = "last_modified"
60
+ limit = limit * 20 if check_status and force_gpu else limit * 5
61
  models = []
62
  try:
63
+ model_infos = api.list_models(author=author, task="text-to-image",
64
+ tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
65
  except Exception as e:
66
  print(f"Error: Failed to list models.")
67
  print(e)
68
  return models
69
  for model in model_infos:
70
+ if not model.private and not model.gated:
71
+ loadable = is_loadable(model.id, force_gpu) if check_status else True
72
+ if not_tag and not_tag in model.tags or not loadable: continue
73
  models.append(model.id)
74
  if len(models) == limit: break
75
  return models
 
354
  # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
355
  def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
356
  height: int | None = None, width: int | None = None,
357
+ steps: int | None = None, cfg: int | None = None, seed: int = -1):
358
  png_path = "image.png"
359
  kwargs = {}
360
  if height is not None and height >= 256: kwargs["height"] = height
361
  if width is not None and width >= 256: kwargs["width"] = width
362
  if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
363
  if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
364
+ if seed >= 0: kwargs["seed"] = seed
365
  try:
366
  if isinstance(client, InferenceClient):
367
  image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
 
377
 
378
  async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
379
  height: int | None = None, width: int | None = None,
380
+ steps: int | None = None, cfg: int | None = None, seed: int = -1,
381
  save_path: str | None = None, timeout: float = inference_timeout):
382
  import random
383
  noise = ""
384
+ if seed < 0:
385
+ rand = random.randint(1, 500)
386
+ for i in range(rand):
387
+ noise += " "
388
  model = load_model(model_name)
389
  if not model: return None
390
  task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
391
+ height, width, steps, cfg, seed))
392
  await asyncio.sleep(0)
393
  try:
394
  result = await asyncio.wait_for(task, timeout=timeout)
 
405
 
406
 
407
  def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
408
+ width: int | None = None, steps: int | None = None, cfg: int | None = None, seed: int = -1,
409
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
410
  if model_name == 'NA':
411
  return None
 
413
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
414
  loop = asyncio.new_event_loop()
415
  result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
416
+ steps, cfg, seed, save_path, inference_timeout))
417
  except (Exception, asyncio.CancelledError) as e:
418
  print(e)
419
  print(f"Task aborted: {model_name}")
 
424
 
425
 
426
  def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
427
+ width: int | None = None, steps: int | None = None, cfg: int | None = None, seed: int = -1,
428
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
429
  import random
430
  if model_name_dummy == 'NA':
 
435
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
436
  loop = asyncio.new_event_loop()
437
  result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
438
+ steps, cfg, seed, save_path, inference_timeout))
439
  except (Exception, asyncio.CancelledError) as e:
440
  print(e)
441
  print(f"Task aborted: {model_name}")