File size: 23,949 Bytes
80e6c51
9374cab
b15c679
 
 
57ec10d
bb53eb4
 
6dffe5a
b15c679
80e6c51
 
 
 
 
 
cea62b1
5373262
a108184
bb53eb4
8e35c48
 
bdee432
80e6c51
bb53eb4
 
80e6c51
bb53eb4
b15c679
bb53eb4
80e6c51
 
6dffe5a
80e6c51
 
 
6dffe5a
80e6c51
 
 
3d6db7f
 
 
 
 
 
6dffe5a
 
3d6db7f
 
 
6dffe5a
 
 
 
 
 
 
 
 
cea62b1
6dffe5a
80e6c51
 
 
 
6dffe5a
80e6c51
 
 
 
 
 
 
 
bb53eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e6c51
 
bb53eb4
 
 
80e6c51
 
6dffe5a
bb53eb4
80e6c51
bb53eb4
9374cab
 
80e6c51
bb53eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e6c51
 
 
6dffe5a
80e6c51
 
 
 
 
 
 
6dffe5a
 
80e6c51
 
 
 
bb53eb4
6dffe5a
80e6c51
 
bb53eb4
 
 
 
 
 
 
 
6dffe5a
 
 
80e6c51
 
 
 
 
 
bb53eb4
 
 
 
 
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
6dffe5a
80e6c51
 
 
 
 
 
6dffe5a
80e6c51
 
bb53eb4
 
 
 
 
 
 
 
 
 
 
b15c679
9374cab
 
b15c679
80e6c51
bb53eb4
9374cab
bb53eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e6c51
 
6dffe5a
 
 
 
ee4073b
80e6c51
 
 
 
 
 
 
6dffe5a
 
b901de9
 
6dffe5a
 
80e6c51
 
 
 
 
 
6dffe5a
 
b901de9
80e6c51
 
cea62b1
52d8257
f62afbf
 
52d8257
 
bb53eb4
b15c679
cac72ef
80e6c51
 
 
 
 
 
 
 
 
 
bb53eb4
 
6dffe5a
80e6c51
 
b15c679
cac72ef
 
b15c679
6dffe5a
3d6db7f
 
b15c679
bb53eb4
 
 
 
 
 
b15c679
cac72ef
b15c679
 
 
bb53eb4
b15c679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e6c51
b15c679
 
 
 
 
 
cac72ef
 
57ec10d
 
 
80e6c51
 
 
 
6dffe5a
80e6c51
 
6dffe5a
b15c679
 
80e6c51
cea62b1
b15c679
 
 
 
 
 
 
 
 
80e6c51
 
b15c679
cac72ef
80e6c51
 
 
 
 
 
 
 
 
 
bb53eb4
 
6dffe5a
80e6c51
 
b15c679
cac72ef
b15c679
 
 
6dffe5a
3d6db7f
 
b15c679
bb53eb4
 
 
 
 
 
b15c679
cac72ef
b15c679
 
 
bb53eb4
b15c679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e6c51
b15c679
 
 
 
 
 
 
 
 
57ec10d
 
 
80e6c51
 
 
 
 
6dffe5a
80e6c51
 
b15c679
6dffe5a
b15c679
80e6c51
cea62b1
b15c679
 
 
 
 
 
 
 
80e6c51
751481f
 
 
 
 
 
b15c679
 
cac72ef
751481f
cac72ef
751481f
cac72ef
 
 
 
 
 
 
bb53eb4
 
cac72ef
 
751481f
 
cac72ef
 
6dffe5a
3d6db7f
 
b15c679
bb53eb4
 
 
 
 
 
b15c679
cac72ef
b15c679
 
 
bb53eb4
b15c679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751481f
 
 
 
 
 
 
 
 
 
 
 
 
b15c679
cac72ef
 
57ec10d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
import spaces
import gradio as gr
from pathlib import Path
import re
import torch
import gc
import os
import urllib
from typing import Any
from huggingface_hub import hf_hub_download, HfApi
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from ja_to_danbooru.ja_to_danbooru import jatags_to_danbooru_tags
import wrapt_timeout_decorator
from llama_cpp_agent.messages_formatter import MessagesFormatter
from formatter import mistral_v1_formatter, mistral_v2_formatter, mistral_v3_tekken_formatter
from llmenv import llm_models, llm_models_dir, llm_loras, llm_loras_dir, llm_formats, llm_languages, dolphin_system_prompt
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)


llm_models_list = []
llm_loras_list = []
default_llm_model_filename = list(llm_models.keys())[0]
default_llm_lora_filename = list(llm_loras.keys())[0]
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.getenv("HF_TOKEN", False)


def to_list(s: str):
    return [x.strip() for x in s.split(",") if not s == ""]


def list_uniq(l: list):
    return sorted(set(l), key=l.index)


DEFAULT_STATE = {
    "dolphin_sysprompt_mode": "Default",
    "dolphin_output_language": llm_languages[0],
}


def get_state(state: dict, key: str):
    if key in state.keys(): return state[key]
    elif key in DEFAULT_STATE.keys():
        print(f"State '{key}' not found. Use dedault value.")
        return DEFAULT_STATE[key]
    else:
        print(f"State '{key}' not found.")
        return None


def set_state(state: dict, key: str, value: Any):
    state[key] = value


@wrapt_timeout_decorator.timeout(dec_timeout=3.5)
def to_list_ja(s: str):
    s = re.sub(r'[、。]', ',', s)
    return [x.strip() for x in s.split(",") if not s == ""]


def is_japanese(s: str):
    import unicodedata
    for ch in s:
        name = unicodedata.name(ch, "") 
        if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
            return True
    return False


def get_dir_size(path: str):
    total = 0
    with os.scandir(path) as it:
        for entry in it:
            if entry.is_file():
                total += entry.stat().st_size
            elif entry.is_dir():
                total += get_dir_size(entry.path)
    return total


def get_dir_size_gb(path: str):
    try:
        size_gb = get_dir_size(path) / (1024 ** 3)
        print(f"Dir size: {size_gb:.2f} GB ({path})")
    except Exception as e:
        size_gb = 999
        print(f"Error while retrieving the used storage: {e}.")
    finally:
        return size_gb


def clean_dir(path: str, size_gb: float, limit_gb: float):
    try:
        files = os.listdir(path)
        files = [os.path.join(path, f) for f in files if f.endswith(".gguf") and default_llm_model_filename not in f and default_llm_lora_filename not in f]
        files.sort(key=os.path.getatime, reverse=False)
        req_bytes = int((size_gb - limit_gb) * (1024 ** 3))
        for file in files:
            if req_bytes < 0: break
            size = os.path.getsize(file)
            Path(file).unlink()
            req_bytes -= size
            print(f"Deleted: {file}")
    except Exception as e:
        print(e)


def update_storage(path: str, limit_gb: float=50.0):
    size_gb = get_dir_size_gb(path)
    if size_gb > limit_gb:
        print("Cleaning storage...")
        clean_dir(path, size_gb, limit_gb)
        #get_dir_size_gb(path)


def split_hf_url(url: str):
    try:
        s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets|spaces)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
        if len(s) < 4: return "", "", "", ""
        repo_id = s[1]
        if s[0] == "datasets": repo_type = "dataset"
        elif s[0] == "spaces": repo_type = "space"
        else: repo_type = "model"
        subfolder = urllib.parse.unquote(s[2]) if s[2] else None
        filename = urllib.parse.unquote(s[3])
        return repo_id, filename, subfolder, repo_type
    except Exception as e:
        print(e)


def hf_url_exists(url: str):
    hf_token = HF_TOKEN
    repo_id, filename, subfolder, repo_type = split_hf_url(url)
    api = HfApi(token=hf_token)
    return api.file_exists(repo_id=repo_id, filename=filename, repo_type=repo_type, token=hf_token)


def get_repo_type(repo_id: str):
    try:
        api = HfApi(token=HF_TOKEN)
        if api.repo_exists(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN): return "dataset"
        elif api.repo_exists(repo_id=repo_id, repo_type="space", token=HF_TOKEN): return "space"
        elif api.repo_exists(repo_id=repo_id, token=HF_TOKEN): return "model"
        else: return None
    except Exception as e:
        print(e)
        raise Exception(f"Repo not found: {repo_id} {e}")


def get_hf_blob_url(repo_id: str, repo_type: str, path: str):
    if repo_type == "model": return f"https://huggingface.co/{repo_id}/blob/main/{path}"
    elif repo_type == "dataset": return f"https://huggingface.co/datasets/{repo_id}/blob/main/{path}"
    elif repo_type == "space": return f"https://huggingface.co/spaces/{repo_id}/blob/main/{path}"


def get_gguf_url(s: str):
    def find_gguf(d: dict, keys: dict):
        paths = []
        for key, size in keys.items():
            if size != 0: l = [p for p, s in d.items() if key.lower() in p.lower() and s < size]
            else: l = [p for p in d.keys() if key.lower() in p.lower()]
            if len(l) > 0: paths.append(l[0])
        if len(paths) > 0: return paths[0]
        return list(d.keys())[0]

    try:
        if s.lower().endswith(".gguf"): return s
        repo_type = get_repo_type(s)
        if repo_type is None: return s
        repo_id = s
        api = HfApi(token=HF_TOKEN)
        gguf_dict = {i.path: i.size for i in api.list_repo_tree(repo_id=repo_id, repo_type=repo_type, recursive=True, token=HF_TOKEN) if i.path.endswith(".gguf")}
        if len(gguf_dict) == 0: return s
        return get_hf_blob_url(repo_id, repo_type, find_gguf(gguf_dict, {"Q5_K_M": 6000000000, "Q4_K_M": 0, "Q4": 0}))
    except Exception as e:
        print(e)
        return s


def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
    hf_token = HF_TOKEN
    repo_id, filename, subfolder, repo_type = split_hf_url(url)
    try:
        print(f"Downloading {url} to {directory}")
        if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
        else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
        return path
    except Exception as e:
        print(f"Failed to download: {e}")
        return None


def update_llm_model_list():
    global llm_models_list
    llm_models_list = []
    for k in llm_models.keys():
        llm_models_list.append(k)
    model_files = Path(llm_models_dir).glob('*.gguf')
    for path in model_files:
        llm_models_list.append(path.name)
    llm_models_list = list_uniq(llm_models_list)
    return llm_models_list


def download_llm_model(filename: str):
    if filename not in llm_models.keys(): return default_llm_model_filename
    try:
        hf_hub_download(repo_id=llm_models[filename][0], filename=filename, local_dir=llm_models_dir, token=HF_TOKEN)
    except Exception as e:
        print(e)
        return default_llm_model_filename
    update_llm_model_list()
    return filename


def update_llm_lora_list():
    global llm_loras_list
    llm_loras_list = list(llm_loras.keys()).copy()
    model_files = Path(llm_loras_dir).glob('*.gguf')
    for path in model_files:
        llm_loras_list.append(path.name)
    llm_loras_list = list_uniq([""] + llm_loras_list)
    return llm_loras_list


def download_llm_lora(filename: str):
    if not filename in llm_loras.keys(): return ""
    try:
        download_hf_file(llm_loras_dir, llm_loras[filename])
    except Exception as e:
        print(e)
        return ""
    update_llm_lora_list()
    return filename


def get_dolphin_model_info(filename: str):
    md = "None"
    items = llm_models.get(filename, None)
    if items:
        md = f'Repo: [{items[0]}](https://huggingface.co/{items[0]})'
    return md


def select_dolphin_model(filename: str, state: dict, progress=gr.Progress(track_tqdm=True)):
    set_state(state, "override_llm_format", None)
    progress(0, desc="Loading model...")
    value = download_llm_model(filename)
    progress(1, desc="Model loaded.")
    md = get_dolphin_model_info(filename)
    update_storage(llm_models_dir)
    return gr.update(value=value, choices=get_dolphin_models()), gr.update(value=get_dolphin_model_format(value)), gr.update(value=md), state


def select_dolphin_lora(filename: str, state: dict, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Loading lora...")
    value = download_llm_lora(filename)
    progress(1, desc="Lora loaded.")
    update_storage(llm_loras_dir)
    return gr.update(value=value, choices=get_dolphin_loras()), state


def select_dolphin_format(format_name: str, state: dict):
    set_state(state, "override_llm_format", llm_formats[format_name])
    return gr.update(value=format_name), state


download_llm_model(default_llm_model_filename)


def get_dolphin_models():
    return update_llm_model_list()


def get_dolphin_loras():
    return update_llm_lora_list()


def get_llm_formats():
    return list(llm_formats.keys())


def get_key_from_value(d, val):
    keys = [k for k, v in d.items() if v == val]
    if keys:
        return keys[0]
    return None


def get_dolphin_model_format(filename: str):
    if not filename in llm_models.keys(): filename = default_llm_model_filename
    format = llm_models[filename][1]
    format_name = get_key_from_value(llm_formats, format)
    return format_name


def add_dolphin_models(query: str, format_name: str):
    global llm_models
    try:
        add_models = {}
        format = llm_formats[format_name]
        filename = ""
        repo = ""
        query = get_gguf_url(query)
        if hf_url_exists(query):
            s = list(re.findall(r'^https?://huggingface.co/(.+?/.+?)/(?:blob|resolve)/main/(.+.gguf)(?:\?download=true)?$', query)[0])
            if len(s) == 2:
                repo = s[0]
                filename = s[1]
                add_models[filename] = [repo, format]
        else: return gr.update()
    except Exception as e:
        print(e)
        return gr.update()
    llm_models = (llm_models | add_models).copy()
    update_llm_model_list()
    choices = get_dolphin_models()
    return gr.update(choices=choices, value=choices[-1])


def add_dolphin_loras(query: str):
    global llm_loras
    try:
        add_loras = {}
        query = get_gguf_url(query)
        if hf_url_exists(query): add_loras[Path(query).name] = query
    except Exception as e:
        print(e)
        return gr.update()
    llm_loras = (llm_loras | add_loras).copy()
    update_llm_lora_list()
    choices = get_dolphin_loras()
    return gr.update(choices=choices, value=choices[-1])


def get_dolphin_sysprompt(state: dict={}):
    dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
    dolphin_output_language = get_state(state, "dolphin_output_language")
    prompt = re.sub('<LANGUAGE>', dolphin_output_language if dolphin_output_language else llm_languages[0],
                    dolphin_system_prompt.get(dolphin_sysprompt_mode, dolphin_system_prompt[list(dolphin_system_prompt.keys())[0]]))
    return prompt


def get_dolphin_sysprompt_mode():
    return list(dolphin_system_prompt.keys())


def select_dolphin_sysprompt(key: str, state: dict):
    dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
    if not key in dolphin_system_prompt.keys(): dolphin_sysprompt_mode = "Default"
    else: dolphin_sysprompt_mode = key
    set_state(state, "dolphin_sysprompt_mode", dolphin_sysprompt_mode)
    return gr.update(value=get_dolphin_sysprompt(state)), state


def get_dolphin_languages():
    return llm_languages


def select_dolphin_language(lang: str, state: dict):
    set_state(state, "dolphin_output_language", lang)
    return gr.update(value=get_dolphin_sysprompt(state)), state


@wrapt_timeout_decorator.timeout(dec_timeout=5.0)
def get_raw_prompt(msg: str):
    m = re.findall(r'/GENBEGIN/(.+?)/GENEND/', msg, re.DOTALL)
    return re.sub(r'[*/:_"#\n]', ' ', ", ".join(m)).lower() if m else ""


# https://llama-cpp-python.readthedocs.io/en/latest/api-reference/
@torch.inference_mode()
@spaces.GPU(duration=59)
def dolphin_respond(

    message: str,

    history: list[tuple[str, str]],

    model: str = default_llm_model_filename,

    system_message: str = get_dolphin_sysprompt(),

    max_tokens: int = 1024,

    temperature: float = 0.7,

    top_p: float = 0.95,

    top_k: int = 40,

    repeat_penalty: float = 1.1,

    lora: str = "",

    lora_scale: float = 1.0,

    state: dict = {},

    progress=gr.Progress(track_tqdm=True),

):
    try:
        model_path = Path(f"{llm_models_dir}/{model}")
        if not model_path.exists(): raise gr.Error(f"Model file not found: {str(model_path)}")
        progress(0, desc="Processing...")
        override_llm_format = get_state(state, "override_llm_format")
        if override_llm_format: chat_template = override_llm_format
        else: chat_template = llm_models[model][1]

        kwargs = {}
        if lora:
            kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
            kwargs["lora_scale"] = lora_scale
        else:
            kwargs["flash_attn"] = True
        llm = Llama(
            model_path=str(model_path),
            n_gpu_layers=81, # 81
            n_batch=1024,
            n_ctx=8192, #8192
            **kwargs,
        )
        provider = LlamaCppPythonProvider(llm)

        agent = LlamaCppAgent(
            provider,
            system_prompt=f"{system_message}",
            predefined_messages_formatter_type=chat_template if not isinstance(chat_template, MessagesFormatter) else None,
            custom_messages_formatter=chat_template if isinstance(chat_template, MessagesFormatter) else None,
            debug_output=False
        )
        
        settings = provider.get_provider_default_settings()
        settings.temperature = temperature
        settings.top_k = top_k
        settings.top_p = top_p
        settings.max_tokens = max_tokens
        settings.repeat_penalty = repeat_penalty
        settings.stream = True

        messages = BasicChatHistory()

        for msn in history:
            user = {
                'role': Roles.user,
                'content': msn[0]
            }
            assistant = {
                'role': Roles.assistant,
                'content': msn[1]
            }
            messages.add_message(user)
            messages.add_message(assistant)
        
        stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False
        )
        
        progress(0.5, desc="Processing...")

        outputs = ""
        for output in stream:
            outputs += output
            yield [(outputs, None)]
    except Exception as e:
        print(e)
        raise gr.Error(f"Error: {e}")
        #yield [("", None)]
    finally:
        torch.cuda.empty_cache()
        gc.collect()


def dolphin_parse(

    history: list[tuple[str, str]],

    state: dict,

):
    try:
        dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
        if dolphin_sysprompt_mode == "Chat with LLM" or not history or len(history) < 1:
            return "", gr.update(), gr.update()
        msg = history[-1][0]
        raw_prompt = get_raw_prompt(msg)
        prompts = []
        if dolphin_sysprompt_mode == "Japanese to Danbooru Dictionary" and is_japanese(raw_prompt):
            prompts = list_uniq(jatags_to_danbooru_tags(to_list_ja(raw_prompt)) + ["nsfw", "explicit"])
        else:
            prompts = list_uniq(to_list(raw_prompt) + ["nsfw", "explicit"])
        return ", ".join(prompts), gr.update(interactive=True), gr.update(interactive=True)
    except Exception as e:
        print(e)
        return "", gr.update(), gr.update()


@torch.inference_mode()
@spaces.GPU(duration=59)
def dolphin_respond_auto(

    message: str,

    history: list[tuple[str, str]],

    model: str = default_llm_model_filename,

    system_message: str = get_dolphin_sysprompt(),

    max_tokens: int = 1024,

    temperature: float = 0.7,

    top_p: float = 0.95,

    top_k: int = 40,

    repeat_penalty: float = 1.1,

    lora: str = "",

    lora_scale: float = 1.0,

    state: dict = {},

    progress=gr.Progress(track_tqdm=True),

):
    try:
        model_path = Path(f"{llm_models_dir}/{model}")
        #if not is_japanese(message): return [(None, None)]
        progress(0, desc="Processing...")

        override_llm_format = get_state(state, "override_llm_format")
        if override_llm_format: chat_template = override_llm_format
        else: chat_template = llm_models[model][1]

        kwargs = {}
        if lora:
            kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
            kwargs["lora_scale"] = lora_scale
        else:
            kwargs["flash_attn"] = True
        llm = Llama(
            model_path=str(model_path),
            n_gpu_layers=81, # 81
            n_batch=1024,
            n_ctx=8192, #8192
            **kwargs,
        )
        provider = LlamaCppPythonProvider(llm)

        agent = LlamaCppAgent(
            provider,
            system_prompt=f"{system_message}",
            predefined_messages_formatter_type=chat_template if not isinstance(chat_template, MessagesFormatter) else None,
            custom_messages_formatter=chat_template if isinstance(chat_template, MessagesFormatter) else None,
            debug_output=False
        )
        
        settings = provider.get_provider_default_settings()
        settings.temperature = temperature
        settings.top_k = top_k
        settings.top_p = top_p
        settings.max_tokens = max_tokens
        settings.repeat_penalty = repeat_penalty
        settings.stream = True

        messages = BasicChatHistory()

        for msn in history:
            user = {
                'role': Roles.user,
                'content': msn[0]
            }
            assistant = {
                'role': Roles.assistant,
                'content': msn[1]
            }
            messages.add_message(user)
            messages.add_message(assistant)
        
        progress(0, desc="Translating...")
        stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False
        )

        progress(0.5, desc="Processing...")

        outputs = ""
        for output in stream:
            outputs += output
            yield [(outputs, None)], gr.update(), gr.update()
    except Exception as e:
        print(e)
        yield [("", None)], gr.update(), gr.update()
    finally:
        torch.cuda.empty_cache()
        gc.collect()


def dolphin_parse_simple(

    message: str,

    history: list[tuple[str, str]],

    state: dict,

):
    try:
        #if not is_japanese(message): return message
        dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
        if dolphin_sysprompt_mode == "Chat with LLM" or not history or len(history) < 1: return message
        msg = history[-1][0]
        raw_prompt = get_raw_prompt(msg)
        prompts = []
        if dolphin_sysprompt_mode == "Japanese to Danbooru Dictionary" and is_japanese(raw_prompt):
            prompts = list_uniq(jatags_to_danbooru_tags(to_list_ja(raw_prompt)) + ["nsfw", "explicit", "rating_explicit"])
        else:
            prompts = list_uniq(to_list(raw_prompt) + ["nsfw", "explicit", "rating_explicit"])
        return ", ".join(prompts)
    except Exception as e:
        print(e)
        return ""


# https://huggingface.co/spaces/CaioXapelaum/GGUF-Playground
import cv2
cv2.setNumThreads(1)


@torch.inference_mode()
@spaces.GPU(duration=59)
def respond_playground(

    message: str,

    history: list[tuple[str, str]],

    model: str = default_llm_model_filename,

    system_message: str = get_dolphin_sysprompt(),

    max_tokens: int = 1024,

    temperature: float = 0.7,

    top_p: float = 0.95,

    top_k: int = 40,

    repeat_penalty: float = 1.1,

    lora: str = "",

    lora_scale: float = 1.0,

    state: dict = {},

    progress=gr.Progress(track_tqdm=True),

):
    try:
        model_path = Path(f"{llm_models_dir}/{model}")
        if not model_path.exists(): raise gr.Error(f"Model file not found: {str(model_path)}")
        override_llm_format = get_state(state, "override_llm_format")
        if override_llm_format: chat_template = override_llm_format
        else: chat_template = llm_models[model][1]

        kwargs = {}
        if lora:
            kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
            kwargs["lora_scale"] = lora_scale
        else:
            kwargs["flash_attn"] = True
        llm = Llama(
            model_path=str(model_path),
            n_gpu_layers=81, # 81
            n_batch=1024,
            n_ctx=8192, #8192
            **kwargs,
        )
        provider = LlamaCppPythonProvider(llm)

        agent = LlamaCppAgent(
            provider,
            system_prompt=f"{system_message}",
            predefined_messages_formatter_type=chat_template if not isinstance(chat_template, MessagesFormatter) else None,
            custom_messages_formatter=chat_template if isinstance(chat_template, MessagesFormatter) else None,
            debug_output=False
        )
        
        settings = provider.get_provider_default_settings()
        settings.temperature = temperature
        settings.top_k = top_k
        settings.top_p = top_p
        settings.max_tokens = max_tokens
        settings.repeat_penalty = repeat_penalty
        settings.stream = True

        messages = BasicChatHistory()

        # Add user and assistant messages to the history
        for msn in history:
            user = {'role': Roles.user, 'content': msn[0]}
            assistant = {'role': Roles.assistant, 'content': msn[1]}
            messages.add_message(user)
            messages.add_message(assistant)

        # Stream the response
        stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False
        )

        outputs = ""
        for output in stream:
            outputs += output
            yield outputs
    except Exception as e:
        print(e)
        raise gr.Error(f"Error: {e}")
        #yield ""
    finally:
        torch.cuda.empty_cache()
        gc.collect()