John6666 commited on
Commit
0c7cfe4
·
verified ·
1 Parent(s): a2baa87

Delete tagger.py

Browse files
Files changed (1) hide show
  1. tagger.py +0 -549
tagger.py DELETED
@@ -1,549 +0,0 @@
1
- from PIL import Image
2
- import torch
3
- import gradio as gr
4
- import spaces
5
- from transformers import (
6
- AutoImageProcessor,
7
- AutoModelForImageClassification,
8
- )
9
- from pathlib import Path
10
-
11
-
12
- WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
13
- WD_MODEL_NAME = WD_MODEL_NAMES[0]
14
-
15
- wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
16
- wd_model.to("cuda" if torch.cuda.is_available() else "cpu")
17
- wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
18
-
19
-
20
- def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
21
- return (
22
- [f"1{noun}"]
23
- + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
24
- + [f"{maximum+1}+{noun}s"]
25
- )
26
-
27
-
28
- PEOPLE_TAGS = (
29
- _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
30
- )
31
-
32
-
33
- RATING_MAP = {
34
- "sfw": "safe",
35
- "general": "safe",
36
- "sensitive": "sensitive",
37
- "questionable": "nsfw",
38
- "explicit": "explicit, nsfw",
39
- }
40
- DANBOORU_TO_E621_RATING_MAP = {
41
- "sfw": "rating_safe",
42
- "general": "rating_safe",
43
- "safe": "rating_safe",
44
- "sensitive": "rating_safe",
45
- "nsfw": "rating_explicit",
46
- "explicit, nsfw": "rating_explicit",
47
- "explicit": "rating_explicit",
48
- "rating:safe": "rating_safe",
49
- "rating:general": "rating_safe",
50
- "rating:sensitive": "rating_safe",
51
- "rating:questionable, nsfw": "rating_explicit",
52
- "rating:explicit, nsfw": "rating_explicit",
53
- }
54
-
55
-
56
- # https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
57
- kaomojis = [
58
- "0_0",
59
- "(o)_(o)",
60
- "+_+",
61
- "+_-",
62
- "._.",
63
- "<o>_<o>",
64
- "<|>_<|>",
65
- "=_=",
66
- ">_<",
67
- "3_3",
68
- "6_9",
69
- ">_o",
70
- "@_@",
71
- "^_^",
72
- "o_o",
73
- "u_u",
74
- "x_x",
75
- "|_|",
76
- "||_||",
77
- ]
78
-
79
-
80
- def replace_underline(x: str):
81
- return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
82
-
83
-
84
- def to_list(s):
85
- return [x.strip() for x in s.split(",") if not s == ""]
86
-
87
-
88
- def list_sub(a, b):
89
- return [e for e in a if e not in b]
90
-
91
-
92
- def list_uniq(l):
93
- return sorted(set(l), key=l.index)
94
-
95
-
96
- def load_dict_from_csv(filename):
97
- dict = {}
98
- if not Path(filename).exists():
99
- if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
100
- else: return dict
101
- try:
102
- with open(filename, 'r', encoding="utf-8") as f:
103
- lines = f.readlines()
104
- except Exception:
105
- print(f"Failed to open dictionary file: {filename}")
106
- return dict
107
- for line in lines:
108
- parts = line.strip().split(',')
109
- dict[parts[0]] = parts[1]
110
- return dict
111
-
112
-
113
- anime_series_dict = load_dict_from_csv('character_series_dict.csv')
114
-
115
-
116
- def character_list_to_series_list(character_list):
117
- output_series_tag = []
118
- series_tag = ""
119
- series_dict = anime_series_dict
120
- for tag in character_list:
121
- series_tag = series_dict.get(tag, "")
122
- if tag.endswith(")"):
123
- tags = tag.split("(")
124
- character_tag = "(".join(tags[:-1])
125
- if character_tag.endswith(" "):
126
- character_tag = character_tag[:-1]
127
- series_tag = tags[-1].replace(")", "")
128
-
129
- if series_tag:
130
- output_series_tag.append(series_tag)
131
-
132
- return output_series_tag
133
-
134
-
135
- def select_random_character(series: str, character: str):
136
- from random import seed, randrange
137
- seed()
138
- character_list = list(anime_series_dict.keys())
139
- character = character_list[randrange(len(character_list) - 1)]
140
- series = anime_series_dict.get(character.split(",")[0].strip(), "")
141
- return series, character
142
-
143
-
144
- def danbooru_to_e621(dtag, e621_dict):
145
- def d_to_e(match, e621_dict):
146
- dtag = match.group(0)
147
- etag = e621_dict.get(replace_underline(dtag), "")
148
- if etag:
149
- return etag
150
- else:
151
- return dtag
152
-
153
- import re
154
- tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
155
- return tag
156
-
157
-
158
- danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
159
-
160
-
161
- def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
162
- if prompt_type == "danbooru": return input_prompt
163
- tags = input_prompt.split(",") if input_prompt else []
164
- people_tags: list[str] = []
165
- other_tags: list[str] = []
166
- rating_tags: list[str] = []
167
-
168
- e621_dict = danbooru_to_e621_dict
169
- for tag in tags:
170
- tag = replace_underline(tag)
171
- tag = danbooru_to_e621(tag, e621_dict)
172
- if tag in PEOPLE_TAGS:
173
- people_tags.append(tag)
174
- elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
175
- rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
176
- else:
177
- other_tags.append(tag)
178
-
179
- rating_tags = sorted(set(rating_tags), key=rating_tags.index)
180
- rating_tags = [rating_tags[0]] if rating_tags else []
181
- rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
182
-
183
- output_prompt = ", ".join(people_tags + other_tags + rating_tags)
184
-
185
- return output_prompt
186
-
187
-
188
- def translate_prompt(prompt: str = ""):
189
- def translate_to_english(prompt):
190
- import httpcore
191
- setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
192
- from googletrans import Translator
193
- translator = Translator()
194
- try:
195
- translated_prompt = translator.translate(prompt, src='auto', dest='en').text
196
- return translated_prompt
197
- except Exception as e:
198
- print(e)
199
- return prompt
200
-
201
- def is_japanese(s):
202
- import unicodedata
203
- for ch in s:
204
- name = unicodedata.name(ch, "")
205
- if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
206
- return True
207
- return False
208
-
209
- def to_list(s):
210
- return [x.strip() for x in s.split(",")]
211
-
212
- prompts = to_list(prompt)
213
- outputs = []
214
- for p in prompts:
215
- p = translate_to_english(p) if is_japanese(p) else p
216
- outputs.append(p)
217
-
218
- return ", ".join(outputs)
219
-
220
-
221
- def translate_prompt_to_ja(prompt: str = ""):
222
- def translate_to_japanese(prompt):
223
- import httpcore
224
- setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
225
- from googletrans import Translator
226
- translator = Translator()
227
- try:
228
- translated_prompt = translator.translate(prompt, src='en', dest='ja').text
229
- return translated_prompt
230
- except Exception as e:
231
- print(e)
232
- return prompt
233
-
234
- def is_japanese(s):
235
- import unicodedata
236
- for ch in s:
237
- name = unicodedata.name(ch, "")
238
- if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
239
- return True
240
- return False
241
-
242
- def to_list(s):
243
- return [x.strip() for x in s.split(",")]
244
-
245
- prompts = to_list(prompt)
246
- outputs = []
247
- for p in prompts:
248
- p = translate_to_japanese(p) if not is_japanese(p) else p
249
- outputs.append(p)
250
-
251
- return ", ".join(outputs)
252
-
253
-
254
- def tags_to_ja(itag, dict):
255
- def t_to_j(match, dict):
256
- tag = match.group(0)
257
- ja = dict.get(replace_underline(tag), "")
258
- if ja:
259
- return ja
260
- else:
261
- return tag
262
-
263
- import re
264
- tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
265
-
266
- return tag
267
-
268
-
269
- def convert_tags_to_ja(input_prompt: str = ""):
270
- tags = input_prompt.split(",") if input_prompt else []
271
- out_tags = []
272
-
273
- tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
274
- dict = tags_to_ja_dict
275
- for tag in tags:
276
- tag = replace_underline(tag)
277
- tag = tags_to_ja(tag, dict)
278
- out_tags.append(tag)
279
-
280
- return ", ".join(out_tags)
281
-
282
-
283
- enable_auto_recom_prompt = True
284
-
285
-
286
- animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
287
- animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
288
- pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
289
- pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
290
- other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
291
- other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
292
- default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
293
- default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
294
- def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
295
- global enable_auto_recom_prompt
296
- prompts = to_list(prompt)
297
- neg_prompts = to_list(neg_prompt)
298
-
299
- prompts = list_sub(prompts, animagine_ps + pony_ps)
300
- neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
301
-
302
- last_empty_p = [""] if not prompts and type != "None" else []
303
- last_empty_np = [""] if not neg_prompts and type != "None" else []
304
-
305
- if type == "Auto":
306
- enable_auto_recom_prompt = True
307
- else:
308
- enable_auto_recom_prompt = False
309
- if type == "Animagine":
310
- prompts = prompts + animagine_ps
311
- neg_prompts = neg_prompts + animagine_nps
312
- elif type == "Pony":
313
- prompts = prompts + pony_ps
314
- neg_prompts = neg_prompts + pony_nps
315
-
316
- prompt = ", ".join(list_uniq(prompts) + last_empty_p)
317
- neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
318
-
319
- return prompt, neg_prompt
320
-
321
-
322
- def load_model_prompt_dict():
323
- import json
324
- dict = {}
325
- path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
326
- try:
327
- with open('model_dict.json', encoding='utf-8') as f:
328
- dict = json.load(f)
329
- except Exception:
330
- pass
331
- return dict
332
-
333
-
334
- model_prompt_dict = load_model_prompt_dict()
335
-
336
-
337
- def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
338
- if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
339
- prompts = to_list(prompt)
340
- neg_prompts = to_list(neg_prompt)
341
- prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
342
- neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
343
- last_empty_p = [""] if not prompts and type != "None" else []
344
- last_empty_np = [""] if not neg_prompts and type != "None" else []
345
- ps = []
346
- nps = []
347
- if model_name in model_prompt_dict.keys():
348
- ps = to_list(model_prompt_dict[model_name]["prompt"])
349
- nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
350
- else:
351
- ps = default_ps
352
- nps = default_nps
353
- prompts = prompts + ps
354
- neg_prompts = neg_prompts + nps
355
- prompt = ", ".join(list_uniq(prompts) + last_empty_p)
356
- neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
357
- return prompt, neg_prompt
358
-
359
-
360
- tag_group_dict = load_dict_from_csv('tag_group.csv')
361
-
362
-
363
- def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
364
- def is_dressed(tag):
365
- import re
366
- p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
367
- return p.search(tag)
368
-
369
- def is_background(tag):
370
- import re
371
- p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
372
- return p.search(tag)
373
-
374
- un_tags = ['solo']
375
- group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
376
- keep_group_dict = {
377
- "body": ['groups', 'body_parts'],
378
- "dress": ['groups', 'body_parts', 'attire'],
379
- "all": group_list,
380
- }
381
-
382
- def is_necessary(tag, keep_tags, group_dict):
383
- if keep_tags == "all":
384
- return True
385
- elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
386
- return False
387
- elif keep_tags == "body" and is_dressed(tag):
388
- return False
389
- elif is_background(tag):
390
- return False
391
- else:
392
- return True
393
-
394
- if keep_tags == "all": return input_prompt
395
- keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
396
- explicit_group = list(set(group_list) ^ set(keep_group))
397
-
398
- tags = input_prompt.split(",") if input_prompt else []
399
- people_tags: list[str] = []
400
- other_tags: list[str] = []
401
-
402
- group_dict = tag_group_dict
403
- for tag in tags:
404
- tag = replace_underline(tag)
405
- if tag in PEOPLE_TAGS:
406
- people_tags.append(tag)
407
- elif is_necessary(tag, keep_tags, group_dict):
408
- other_tags.append(tag)
409
-
410
- output_prompt = ", ".join(people_tags + other_tags)
411
-
412
- return output_prompt
413
-
414
-
415
- def sort_taglist(tags: list[str]):
416
- if not tags: return []
417
- character_tags: list[str] = []
418
- series_tags: list[str] = []
419
- people_tags: list[str] = []
420
- group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
421
- group_tags = {}
422
- other_tags: list[str] = []
423
- rating_tags: list[str] = []
424
-
425
- group_dict = tag_group_dict
426
- group_set = set(group_dict.keys())
427
- character_set = set(anime_series_dict.keys())
428
- series_set = set(anime_series_dict.values())
429
- rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
430
-
431
- for tag in tags:
432
- tag = replace_underline(tag)
433
- if tag in PEOPLE_TAGS:
434
- people_tags.append(tag)
435
- elif tag in rating_set:
436
- rating_tags.append(tag)
437
- elif tag in group_set:
438
- elem = group_dict[tag]
439
- group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
440
- elif tag in character_set:
441
- character_tags.append(tag)
442
- elif tag in series_set:
443
- series_tags.append(tag)
444
- else:
445
- other_tags.append(tag)
446
-
447
- output_group_tags: list[str] = []
448
- for k in group_list:
449
- output_group_tags.extend(group_tags.get(k, []))
450
-
451
- rating_tags = [rating_tags[0]] if rating_tags else []
452
- rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
453
-
454
- output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
455
-
456
- return output_tags
457
-
458
-
459
- def sort_tags(tags: str):
460
- if not tags: return ""
461
- taglist: list[str] = []
462
- for tag in tags.split(","):
463
- taglist.append(tag.strip())
464
- taglist = list(filter(lambda x: x != "", taglist))
465
- return ", ".join(sort_taglist(taglist))
466
-
467
-
468
- def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
469
- results = {
470
- k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
471
- }
472
-
473
- rating = {}
474
- character = {}
475
- general = {}
476
-
477
- for k, v in results.items():
478
- if k.startswith("rating:"):
479
- rating[k.replace("rating:", "")] = v
480
- continue
481
- elif k.startswith("character:"):
482
- character[k.replace("character:", "")] = v
483
- continue
484
-
485
- general[k] = v
486
-
487
- character = {k: v for k, v in character.items() if v >= character_threshold}
488
- general = {k: v for k, v in general.items() if v >= general_threshold}
489
-
490
- return rating, character, general
491
-
492
-
493
- def gen_prompt(rating: list[str], character: list[str], general: list[str]):
494
- people_tags: list[str] = []
495
- other_tags: list[str] = []
496
- rating_tag = RATING_MAP[rating[0]]
497
-
498
- for tag in general:
499
- if tag in PEOPLE_TAGS:
500
- people_tags.append(tag)
501
- else:
502
- other_tags.append(tag)
503
-
504
- all_tags = people_tags + other_tags
505
-
506
- return ", ".join(all_tags)
507
-
508
-
509
- @spaces.GPU()
510
- def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
511
- inputs = wd_processor.preprocess(image, return_tensors="pt")
512
-
513
- outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
514
- logits = torch.sigmoid(outputs.logits[0]) # take the first logits
515
-
516
- # get probabilities
517
- results = {
518
- wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
519
- }
520
- # rating, character, general
521
- rating, character, general = postprocess_results(
522
- results, general_threshold, character_threshold
523
- )
524
- prompt = gen_prompt(
525
- list(rating.keys()), list(character.keys()), list(general.keys())
526
- )
527
- output_series_tag = ""
528
- output_series_list = character_list_to_series_list(character.keys())
529
- if output_series_list:
530
- output_series_tag = output_series_list[0]
531
- else:
532
- output_series_tag = ""
533
- return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
534
-
535
-
536
- def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
537
- character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
538
- if not "Use WD Tagger" in algo and len(algo) != 0:
539
- return input_series, input_character, input_tags, gr.update(interactive=True)
540
- return predict_tags(image, general_threshold, character_threshold)
541
-
542
-
543
- def compose_prompt_to_copy(character: str, series: str, general: str):
544
- characters = character.split(",") if character else []
545
- serieses = series.split(",") if series else []
546
- generals = general.split(",") if general else []
547
- tags = characters + serieses + generals
548
- cprompt = ",".join(tags) if tags else ""
549
- return cprompt