John6666's picture
Upload 3 files
b9c8de4 verified
import spaces
import gradio as gr
from pathlib import Path
import re
import torch
import gc
import os
import urllib
from typing import Any
from huggingface_hub import hf_hub_download, HfApi
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from ja_to_danbooru.ja_to_danbooru import jatags_to_danbooru_tags
import wrapt_timeout_decorator
from llama_cpp_agent.messages_formatter import MessagesFormatter
from formatter import mistral_v1_formatter, mistral_v2_formatter, mistral_v3_tekken_formatter
from llmenv import llm_models, llm_models_dir, llm_loras, llm_loras_dir, llm_formats, llm_languages, dolphin_system_prompt
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
llm_models_list = []
llm_loras_list = []
default_llm_model_filename = list(llm_models.keys())[0]
default_llm_lora_filename = list(llm_loras.keys())[0]
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.getenv("HF_TOKEN", False)
def to_list(s: str):
return [x.strip() for x in s.split(",") if not s == ""]
def list_uniq(l: list):
return sorted(set(l), key=l.index)
DEFAULT_STATE = {
"dolphin_sysprompt_mode": "Default",
"dolphin_output_language": llm_languages[0],
}
def get_state(state: dict, key: str):
if key in state.keys(): return state[key]
elif key in DEFAULT_STATE.keys():
print(f"State '{key}' not found. Use dedault value.")
return DEFAULT_STATE[key]
else:
print(f"State '{key}' not found.")
return None
def set_state(state: dict, key: str, value: Any):
state[key] = value
@wrapt_timeout_decorator.timeout(dec_timeout=3.5)
def to_list_ja(s: str):
s = re.sub(r'[、。]', ',', s)
return [x.strip() for x in s.split(",") if not s == ""]
def is_japanese(s: str):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def get_dir_size(path: str):
total = 0
with os.scandir(path) as it:
for entry in it:
if entry.is_file():
total += entry.stat().st_size
elif entry.is_dir():
total += get_dir_size(entry.path)
return total
def get_dir_size_gb(path: str):
try:
size_gb = get_dir_size(path) / (1024 ** 3)
print(f"Dir size: {size_gb:.2f} GB ({path})")
except Exception as e:
size_gb = 999
print(f"Error while retrieving the used storage: {e}.")
finally:
return size_gb
def clean_dir(path: str, size_gb: float, limit_gb: float):
try:
files = os.listdir(path)
files = [os.path.join(path, f) for f in files if f.endswith(".gguf") and default_llm_model_filename not in f and default_llm_lora_filename not in f]
files.sort(key=os.path.getatime, reverse=False)
req_bytes = int((size_gb - limit_gb) * (1024 ** 3))
for file in files:
if req_bytes < 0: break
size = os.path.getsize(file)
Path(file).unlink()
req_bytes -= size
print(f"Deleted: {file}")
except Exception as e:
print(e)
def update_storage(path: str, limit_gb: float=50.0):
size_gb = get_dir_size_gb(path)
if size_gb > limit_gb:
print("Cleaning storage...")
clean_dir(path, size_gb, limit_gb)
#get_dir_size_gb(path)
def split_hf_url(url: str):
try:
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets|spaces)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
if len(s) < 4: return "", "", "", ""
repo_id = s[1]
if s[0] == "datasets": repo_type = "dataset"
elif s[0] == "spaces": repo_type = "space"
else: repo_type = "model"
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
filename = urllib.parse.unquote(s[3])
return repo_id, filename, subfolder, repo_type
except Exception as e:
print(e)
def hf_url_exists(url: str):
hf_token = HF_TOKEN
repo_id, filename, subfolder, repo_type = split_hf_url(url)
api = HfApi(token=hf_token)
return api.file_exists(repo_id=repo_id, filename=filename, repo_type=repo_type, token=hf_token)
def get_repo_type(repo_id: str):
try:
api = HfApi(token=HF_TOKEN)
if api.repo_exists(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN): return "dataset"
elif api.repo_exists(repo_id=repo_id, repo_type="space", token=HF_TOKEN): return "space"
elif api.repo_exists(repo_id=repo_id, token=HF_TOKEN): return "model"
else: return None
except Exception as e:
print(e)
raise Exception(f"Repo not found: {repo_id} {e}")
def get_hf_blob_url(repo_id: str, repo_type: str, path: str):
if repo_type == "model": return f"https://huggingface.co/{repo_id}/blob/main/{path}"
elif repo_type == "dataset": return f"https://huggingface.co/datasets/{repo_id}/blob/main/{path}"
elif repo_type == "space": return f"https://huggingface.co/spaces/{repo_id}/blob/main/{path}"
def get_gguf_url(s: str):
def find_gguf(d: dict, keys: dict):
paths = []
for key, size in keys.items():
if size != 0: l = [p for p, s in d.items() if key.lower() in p.lower() and s < size]
else: l = [p for p in d.keys() if key.lower() in p.lower()]
if len(l) > 0: paths.append(l[0])
if len(paths) > 0: return paths[0]
return list(d.keys())[0]
try:
if s.lower().endswith(".gguf"): return s
repo_type = get_repo_type(s)
if repo_type is None: return s
repo_id = s
api = HfApi(token=HF_TOKEN)
gguf_dict = {i.path: i.size for i in api.list_repo_tree(repo_id=repo_id, repo_type=repo_type, recursive=True, token=HF_TOKEN) if i.path.endswith(".gguf")}
if len(gguf_dict) == 0: return s
return get_hf_blob_url(repo_id, repo_type, find_gguf(gguf_dict, {"Q5_K_M": 6000000000, "Q4_K_M": 0, "Q4": 0}))
except Exception as e:
print(e)
return s
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
hf_token = HF_TOKEN
repo_id, filename, subfolder, repo_type = split_hf_url(url)
try:
print(f"Downloading {url} to {directory}")
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
return path
except Exception as e:
print(f"Failed to download: {e}")
return None
def update_llm_model_list():
global llm_models_list
llm_models_list = []
for k in llm_models.keys():
llm_models_list.append(k)
model_files = Path(llm_models_dir).glob('*.gguf')
for path in model_files:
llm_models_list.append(path.name)
llm_models_list = list_uniq(llm_models_list)
return llm_models_list
def download_llm_model(filename: str):
if filename not in llm_models.keys(): return default_llm_model_filename
try:
hf_hub_download(repo_id=llm_models[filename][0], filename=filename, local_dir=llm_models_dir, token=HF_TOKEN)
except Exception as e:
print(e)
return default_llm_model_filename
update_llm_model_list()
return filename
def update_llm_lora_list():
global llm_loras_list
llm_loras_list = list(llm_loras.keys()).copy()
model_files = Path(llm_loras_dir).glob('*.gguf')
for path in model_files:
llm_loras_list.append(path.name)
llm_loras_list = list_uniq([""] + llm_loras_list)
return llm_loras_list
def download_llm_lora(filename: str):
if not filename in llm_loras.keys(): return ""
try:
download_hf_file(llm_loras_dir, llm_loras[filename])
except Exception as e:
print(e)
return ""
update_llm_lora_list()
return filename
def get_dolphin_model_info(filename: str):
md = "None"
items = llm_models.get(filename, None)
if items:
md = f'Repo: [{items[0]}](https://huggingface.co/{items[0]})'
return md
def select_dolphin_model(filename: str, state: dict, progress=gr.Progress(track_tqdm=True)):
set_state(state, "override_llm_format", None)
progress(0, desc="Loading model...")
value = download_llm_model(filename)
progress(1, desc="Model loaded.")
md = get_dolphin_model_info(filename)
update_storage(llm_models_dir)
return gr.update(value=value, choices=get_dolphin_models()), gr.update(value=get_dolphin_model_format(value)), gr.update(value=md), state
def select_dolphin_lora(filename: str, state: dict, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Loading lora...")
value = download_llm_lora(filename)
progress(1, desc="Lora loaded.")
update_storage(llm_loras_dir)
return gr.update(value=value, choices=get_dolphin_loras()), state
def select_dolphin_format(format_name: str, state: dict):
set_state(state, "override_llm_format", llm_formats[format_name])
return gr.update(value=format_name), state
download_llm_model(default_llm_model_filename)
def get_dolphin_models():
return update_llm_model_list()
def get_dolphin_loras():
return update_llm_lora_list()
def get_llm_formats():
return list(llm_formats.keys())
def get_key_from_value(d, val):
keys = [k for k, v in d.items() if v == val]
if keys:
return keys[0]
return None
def get_dolphin_model_format(filename: str):
if not filename in llm_models.keys(): filename = default_llm_model_filename
format = llm_models[filename][1]
format_name = get_key_from_value(llm_formats, format)
return format_name
def add_dolphin_models(query: str, format_name: str):
global llm_models
try:
add_models = {}
format = llm_formats[format_name]
filename = ""
repo = ""
query = get_gguf_url(query)
if hf_url_exists(query):
s = list(re.findall(r'^https?://huggingface.co/(.+?/.+?)/(?:blob|resolve)/main/(.+.gguf)(?:\?download=true)?$', query)[0])
if len(s) == 2:
repo = s[0]
filename = s[1]
add_models[filename] = [repo, format]
else: return gr.update()
except Exception as e:
print(e)
return gr.update()
llm_models = (llm_models | add_models).copy()
update_llm_model_list()
choices = get_dolphin_models()
return gr.update(choices=choices, value=choices[-1])
def add_dolphin_loras(query: str):
global llm_loras
try:
add_loras = {}
query = get_gguf_url(query)
if hf_url_exists(query): add_loras[Path(query).name] = query
except Exception as e:
print(e)
return gr.update()
llm_loras = (llm_loras | add_loras).copy()
update_llm_lora_list()
choices = get_dolphin_loras()
return gr.update(choices=choices, value=choices[-1])
def get_dolphin_sysprompt(state: dict={}):
dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
dolphin_output_language = get_state(state, "dolphin_output_language")
prompt = re.sub('<LANGUAGE>', dolphin_output_language if dolphin_output_language else llm_languages[0],
dolphin_system_prompt.get(dolphin_sysprompt_mode, dolphin_system_prompt[list(dolphin_system_prompt.keys())[0]]))
return prompt
def get_dolphin_sysprompt_mode():
return list(dolphin_system_prompt.keys())
def select_dolphin_sysprompt(key: str, state: dict):
dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
if not key in dolphin_system_prompt.keys(): dolphin_sysprompt_mode = "Default"
else: dolphin_sysprompt_mode = key
set_state(state, "dolphin_sysprompt_mode", dolphin_sysprompt_mode)
return gr.update(value=get_dolphin_sysprompt(state)), state
def get_dolphin_languages():
return llm_languages
def select_dolphin_language(lang: str, state: dict):
set_state(state, "dolphin_output_language", lang)
return gr.update(value=get_dolphin_sysprompt(state)), state
@wrapt_timeout_decorator.timeout(dec_timeout=5.0)
def get_raw_prompt(msg: str):
m = re.findall(r'/GENBEGIN/(.+?)/GENEND/', msg, re.DOTALL)
return re.sub(r'[*/:_"#\n]', ' ', ", ".join(m)).lower() if m else ""
# https://llama-cpp-python.readthedocs.io/en/latest/api-reference/
@torch.inference_mode()
@spaces.GPU(duration=59)
def dolphin_respond(
message: str,
history: list[tuple[str, str]],
model: str = default_llm_model_filename,
system_message: str = get_dolphin_sysprompt(),
max_tokens: int = 1024,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repeat_penalty: float = 1.1,
lora: str = "",
lora_scale: float = 1.0,
state: dict = {},
progress=gr.Progress(track_tqdm=True),
):
try:
model_path = Path(f"{llm_models_dir}/{model}")
if not model_path.exists(): raise gr.Error(f"Model file not found: {str(model_path)}")
progress(0, desc="Processing...")
override_llm_format = get_state(state, "override_llm_format")
if override_llm_format: chat_template = override_llm_format
else: chat_template = llm_models[model][1]
kwargs = {}
if lora:
kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
kwargs["lora_scale"] = lora_scale
else:
kwargs["flash_attn"] = True
llm = Llama(
model_path=str(model_path),
n_gpu_layers=81, # 81
n_batch=1024,
n_ctx=8192, #8192
**kwargs,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template if not isinstance(chat_template, MessagesFormatter) else None,
custom_messages_formatter=chat_template if isinstance(chat_template, MessagesFormatter) else None,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
progress(0.5, desc="Processing...")
outputs = ""
for output in stream:
outputs += output
yield [(outputs, None)]
except Exception as e:
print(e)
raise gr.Error(f"Error: {e}")
#yield [("", None)]
finally:
torch.cuda.empty_cache()
gc.collect()
def dolphin_parse(
history: list[tuple[str, str]],
state: dict,
):
try:
dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
if dolphin_sysprompt_mode == "Chat with LLM" or not history or len(history) < 1:
return "", gr.update(), gr.update()
msg = history[-1][0]
raw_prompt = get_raw_prompt(msg)
prompts = []
if dolphin_sysprompt_mode == "Japanese to Danbooru Dictionary" and is_japanese(raw_prompt):
prompts = list_uniq(jatags_to_danbooru_tags(to_list_ja(raw_prompt)) + ["nsfw", "explicit"])
else:
prompts = list_uniq(to_list(raw_prompt) + ["nsfw", "explicit"])
return ", ".join(prompts), gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
print(e)
return "", gr.update(), gr.update()
@torch.inference_mode()
@spaces.GPU(duration=59)
def dolphin_respond_auto(
message: str,
history: list[tuple[str, str]],
model: str = default_llm_model_filename,
system_message: str = get_dolphin_sysprompt(),
max_tokens: int = 1024,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repeat_penalty: float = 1.1,
lora: str = "",
lora_scale: float = 1.0,
state: dict = {},
progress=gr.Progress(track_tqdm=True),
):
try:
model_path = Path(f"{llm_models_dir}/{model}")
#if not is_japanese(message): return [(None, None)]
progress(0, desc="Processing...")
override_llm_format = get_state(state, "override_llm_format")
if override_llm_format: chat_template = override_llm_format
else: chat_template = llm_models[model][1]
kwargs = {}
if lora:
kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
kwargs["lora_scale"] = lora_scale
else:
kwargs["flash_attn"] = True
llm = Llama(
model_path=str(model_path),
n_gpu_layers=81, # 81
n_batch=1024,
n_ctx=8192, #8192
**kwargs,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template if not isinstance(chat_template, MessagesFormatter) else None,
custom_messages_formatter=chat_template if isinstance(chat_template, MessagesFormatter) else None,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
progress(0, desc="Translating...")
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
progress(0.5, desc="Processing...")
outputs = ""
for output in stream:
outputs += output
yield [(outputs, None)], gr.update(), gr.update()
except Exception as e:
print(e)
yield [("", None)], gr.update(), gr.update()
finally:
torch.cuda.empty_cache()
gc.collect()
def dolphin_parse_simple(
message: str,
history: list[tuple[str, str]],
state: dict,
):
try:
#if not is_japanese(message): return message
dolphin_sysprompt_mode = get_state(state, "dolphin_sysprompt_mode")
if dolphin_sysprompt_mode == "Chat with LLM" or not history or len(history) < 1: return message
msg = history[-1][0]
raw_prompt = get_raw_prompt(msg)
prompts = []
if dolphin_sysprompt_mode == "Japanese to Danbooru Dictionary" and is_japanese(raw_prompt):
prompts = list_uniq(jatags_to_danbooru_tags(to_list_ja(raw_prompt)) + ["nsfw", "explicit", "rating_explicit"])
else:
prompts = list_uniq(to_list(raw_prompt) + ["nsfw", "explicit", "rating_explicit"])
return ", ".join(prompts)
except Exception as e:
print(e)
return ""
# https://huggingface.co/spaces/CaioXapelaum/GGUF-Playground
import cv2
cv2.setNumThreads(1)
@torch.inference_mode()
@spaces.GPU(duration=59)
def respond_playground(
message: str,
history: list[tuple[str, str]],
model: str = default_llm_model_filename,
system_message: str = get_dolphin_sysprompt(),
max_tokens: int = 1024,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repeat_penalty: float = 1.1,
lora: str = "",
lora_scale: float = 1.0,
state: dict = {},
progress=gr.Progress(track_tqdm=True),
):
try:
model_path = Path(f"{llm_models_dir}/{model}")
if not model_path.exists(): raise gr.Error(f"Model file not found: {str(model_path)}")
override_llm_format = get_state(state, "override_llm_format")
if override_llm_format: chat_template = override_llm_format
else: chat_template = llm_models[model][1]
kwargs = {}
if lora:
kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
kwargs["lora_scale"] = lora_scale
else:
kwargs["flash_attn"] = True
llm = Llama(
model_path=str(model_path),
n_gpu_layers=81, # 81
n_batch=1024,
n_ctx=8192, #8192
**kwargs,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template if not isinstance(chat_template, MessagesFormatter) else None,
custom_messages_formatter=chat_template if isinstance(chat_template, MessagesFormatter) else None,
debug_output=False
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add user and assistant messages to the history
for msn in history:
user = {'role': Roles.user, 'content': msn[0]}
assistant = {'role': Roles.assistant, 'content': msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Stream the response
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
except Exception as e:
print(e)
raise gr.Error(f"Error: {e}")
#yield ""
finally:
torch.cuda.empty_cache()
gc.collect()