Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("bigscience/T0pp") | |
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp") | |
#tokenizer = AutoTokenizer.from_pretrained("ethzanalytics/ai-msgbot-gpt2-M") | |
#model = AutoModelForCausalLM.from_pretrained("ethzanalytics/ai-msgbot-gpt2-M") | |
import gradio as gr | |
import random | |
def chat(message): | |
history = gr.get_state() or [] | |
if message.startswith("How many"): | |
response = random.randint(1,10) | |
elif message.startswith("How"): | |
response = random.choice(["Great", "Good", "Okay", "Bad"]) | |
elif message.startswith("Where"): | |
response = random.choice(["Here", "There", "Somewhere"]) | |
else: | |
inputs = tokenizer.encode(message, return_tensors="pt") | |
input_len = len(message) | |
outputs = model.generate(inputs) | |
response = tokenizer.decode(outputs[0])[input_len:] | |
history.append((message, response)) | |
gr.set_state(history) | |
html = "<div class='chatbot'>" | |
for user_msg, resp_msg in history: | |
html += f"<div class='user_msg'>{user_msg}</div>" | |
html += f"<div class='resp_msg'>{resp_msg}</div>" | |
html += "</div>" | |
return html | |
iface = gr.Interface(chat, "text", "html", css=""" | |
.chatbox {display:flex;flex-direction:column} | |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} | |
.user_msg {background-color:cornflowerblue;color:white;align-self:start} | |
.resp_msg {background-color:lightgray;align-self:self-end} | |
""", allow_screenshot=False, allow_flagging=False) | |
iface.launch() | |