jonathanlehner
added simple gradio
da24cdd
raw
history blame
1.64 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("bigscience/T0pp")
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp")
#tokenizer = AutoTokenizer.from_pretrained("ethzanalytics/ai-msgbot-gpt2-M")
#model = AutoModelForCausalLM.from_pretrained("ethzanalytics/ai-msgbot-gpt2-M")
import gradio as gr
import random
def chat(message):
history = gr.get_state() or []
if message.startswith("How many"):
response = random.randint(1,10)
elif message.startswith("How"):
response = random.choice(["Great", "Good", "Okay", "Bad"])
elif message.startswith("Where"):
response = random.choice(["Here", "There", "Somewhere"])
else:
inputs = tokenizer.encode(message, return_tensors="pt")
input_len = len(message)
outputs = model.generate(inputs)
response = tokenizer.decode(outputs[0])[input_len:]
history.append((message, response))
gr.set_state(history)
html = "<div class='chatbot'>"
for user_msg, resp_msg in history:
html += f"<div class='user_msg'>{user_msg}</div>"
html += f"<div class='resp_msg'>{resp_msg}</div>"
html += "</div>"
return html
iface = gr.Interface(chat, "text", "html", css="""
.chatbox {display:flex;flex-direction:column}
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
.resp_msg {background-color:lightgray;align-self:self-end}
""", allow_screenshot=False, allow_flagging=False)
iface.launch()