Chesstour / main.py
JosephCatrambone's picture
Changing a few parameters and training for much longer. Should have better outputs now.
6b8f356
import os
import sys
import torch
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import data
from model import ChessModel
# Experiment parameters:
RUN_CONFIGURATION = {
"learning_rate": 0.0004,
"dataset_cap": 100000,
"epochs": 1000,
"latent_size": 256,
}
# Logging:
wandb = None
try:
import wandb
wandb.init("assembly_ai_hackathon_2022", config=RUN_CONFIGURATION)
except ImportError:
print("Weights and Biases not found in packages.")
def train():
learning_rate = RUN_CONFIGURATION["learning_rate"]
latent_size = RUN_CONFIGURATION["latent_size"]
data_cap = RUN_CONFIGURATION["dataset_cap"]
num_epochs = RUN_CONFIGURATION["epochs"]
device_string = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device_string)
model = ChessModel(latent_size).to(torch.float32).to(device)
opt = torch.optim.Adam(model.parameters(), lr=learning_rate)
reconstruction_loss_fn = nn.CrossEntropyLoss().to(torch.float32).to(device)
popularity_loss_fn = nn.L1Loss().to(torch.float32).to(device)
evaluation_loss_fn = nn.L1Loss().to(torch.float32).to(device)
data_loader = DataLoader(data.LichessPuzzleDataset(cap_data=data_cap), batch_size=64, num_workers=1) # 1 to avoid threading madness.
save_every_nth_epoch = 50
upload_logs_every_nth_epoch = 1
for epoch in range(num_epochs):
model.train()
total_reconstruction_loss = 0.0
total_popularity_loss = 0.0
total_evaluation_loss = 0.0
total_batch_loss = 0.0
num_batches = 0
for batch_idx, (board_vec, popularity, evaluation) in tqdm(enumerate(data_loader)):
board_vec = board_vec.to(torch.float32).to(device) # [batch_size x 903]
popularity = popularity.to(torch.float32).to(device).unsqueeze(1) # enforce [batch_size, 1]
evaluation = evaluation.to(torch.float32).to(device).unsqueeze(1)
_embedding, predicted_popularity, predicted_evaluation, predicted_board_vec = model(board_vec)
reconstruction_loss = reconstruction_loss_fn(predicted_board_vec, board_vec)
popularity_loss = popularity_loss_fn(predicted_popularity, popularity)
evaluation_loss = evaluation_loss_fn(predicted_evaluation, evaluation)
#total_loss = reconstruction_loss + popularity_loss + evaluation_loss
total_loss = popularity_loss
opt.zero_grad()
total_loss.backward()
opt.step()
total_reconstruction_loss += reconstruction_loss.cpu().item()
total_popularity_loss += popularity_loss.cpu().item()
total_evaluation_loss += evaluation_loss.cpu().item()
total_batch_loss += total_loss.cpu().item()
num_batches += 1
print(f"Average reconstruction loss: {total_reconstruction_loss/num_batches}")
print(f"Average popularity loss: {total_popularity_loss/num_batches}")
print(f"Average evaluation loss: {total_evaluation_loss/num_batches}")
print(f"Average batch loss: {total_batch_loss/num_batches}")
if save_every_nth_epoch > 0 and (epoch % save_every_nth_epoch) == 0:
torch.save(model, f"checkpoints/epoch_{epoch}.pth")
if wandb:
wandb.log(
# For now, just log popularity.
{"popularity_loss": total_popularity_loss},
commit=(epoch+1) % upload_logs_every_nth_epoch == 0
)
torch.save(model, "checkpoints/final.pth")
if wandb:
wandb.finish()
def infer(fen):
pass
def test():
pass
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python {sys.argv[0]} --train|infer")
elif sys.argv[1] == "--train":
train()
elif sys.argv[2] == "--infer":
infer(sys.argv[3])