File size: 6,025 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from collections import defaultdict
from typing import Any, Dict, Optional, Tuple

from yaml import safe_dump, safe_load

from ..extras.constants import (
    CHECKPOINT_NAMES,
    DATA_CONFIG,
    DEFAULT_TEMPLATE,
    PEFT_METHODS,
    STAGES_USE_PAIR_DATA,
    SUPPORTED_MODELS,
    TRAINING_STAGES,
    VISION_MODELS,
    DownloadSource,
)
from ..extras.logging import get_logger
from ..extras.misc import use_modelscope
from ..extras.packages import is_gradio_available


if is_gradio_available():
    import gradio as gr


logger = get_logger(__name__)


DEFAULT_CACHE_DIR = "cache"
DEFAULT_CONFIG_DIR = "config"
DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user_config.yaml"


def get_save_dir(*paths: str) -> os.PathLike:
    r"""
    Gets the path to saved model checkpoints.
    """
    if os.path.sep in paths[-1]:
        logger.warning("Found complex path, some features may be not available.")
        return paths[-1]

    paths = (path.replace(" ", "").strip() for path in paths)
    return os.path.join(DEFAULT_SAVE_DIR, *paths)


def get_config_path() -> os.PathLike:
    r"""
    Gets the path to user config.
    """
    return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG)


def load_config() -> Dict[str, Any]:
    r"""
    Loads user config if exists.
    """
    try:
        with open(get_config_path(), "r", encoding="utf-8") as f:
            return safe_load(f)
    except Exception:
        return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}


def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None:
    r"""
    Saves user config.
    """
    os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
    user_config = load_config()
    user_config["lang"] = lang or user_config["lang"]
    if model_name:
        user_config["last_model"] = model_name

    if model_name and model_path:
        user_config["path_dict"][model_name] = model_path

    with open(get_config_path(), "w", encoding="utf-8") as f:
        safe_dump(user_config, f)


def get_model_path(model_name: str) -> str:
    r"""
    Gets the model path according to the model name.
    """
    user_config = load_config()
    path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
    model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "")
    if (
        use_modelscope()
        and path_dict.get(DownloadSource.MODELSCOPE)
        and model_path == path_dict.get(DownloadSource.DEFAULT)
    ):  # replace path
        model_path = path_dict.get(DownloadSource.MODELSCOPE)

    return model_path


def get_prefix(model_name: str) -> str:
    r"""
    Gets the prefix of the model name to obtain the model family.
    """
    return model_name.split("-")[0]


def get_model_info(model_name: str) -> Tuple[str, str, bool]:
    r"""
    Gets the necessary information of this model.

    Returns:
        model_path (str)
        template (str)
        visual (bool)
    """
    return get_model_path(model_name), get_template(model_name), get_visual(model_name)


def get_template(model_name: str) -> str:
    r"""
    Gets the template name if the model is a chat model.
    """
    if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE:
        return DEFAULT_TEMPLATE[get_prefix(model_name)]
    return "default"


def get_visual(model_name: str) -> bool:
    r"""
    Judges if the model is a vision language model.
    """
    return get_prefix(model_name) in VISION_MODELS


def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown":
    r"""
    Lists all available checkpoints.
    """
    checkpoints = []
    if model_name:
        save_dir = get_save_dir(model_name, finetuning_type)
        if save_dir and os.path.isdir(save_dir):
            for checkpoint in os.listdir(save_dir):
                if os.path.isdir(os.path.join(save_dir, checkpoint)) and any(
                    os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES
                ):
                    checkpoints.append(checkpoint)

    if finetuning_type in PEFT_METHODS:
        return gr.Dropdown(value=[], choices=checkpoints, multiselect=True)
    else:
        return gr.Dropdown(value=None, choices=checkpoints, multiselect=False)


def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
    r"""
    Loads dataset_info.json.
    """
    if dataset_dir == "ONLINE":
        logger.info("dataset_dir is ONLINE, using online dataset.")
        return {}

    try:
        with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
            return json.load(f)
    except Exception as err:
        logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err)))
        return {}


def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown":
    r"""
    Lists all available datasets in the dataset dir for the training stage.
    """
    dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
    ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA
    datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
    return gr.Dropdown(choices=datasets)