File size: 9,144 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import os
import signal
import sys
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import TYPE_CHECKING, Any, Dict, Optional

import transformers
from transformers import TrainerCallback
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length

from .constants import TRAINER_LOG
from .logging import LoggerHandler, get_logger
from .misc import fix_valuehead_checkpoint


if TYPE_CHECKING:
    from transformers import TrainerControl, TrainerState, TrainingArguments


logger = get_logger(__name__)


class FixValueHeadModelCallback(TrainerCallback):
    def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called after a checkpoint save.
        """
        if args.should_save:
            fix_valuehead_checkpoint(
                model=kwargs.pop("model"),
                output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
                safe_serialization=args.save_safetensors,
            )


class LogCallback(TrainerCallback):
    def __init__(self, output_dir: str) -> None:
        r"""
        Initializes a callback for logging training and evaluation status.
        """
        """ Progress """
        self.start_time = 0
        self.cur_steps = 0
        self.max_steps = 0
        self.elapsed_time = ""
        self.remaining_time = ""
        self.thread_pool: Optional["ThreadPoolExecutor"] = None
        """ Status """
        self.aborted = False
        self.do_train = False
        """ Web UI """
        self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
        if self.webui_mode:
            signal.signal(signal.SIGABRT, self._set_abort)
            self.logger_handler = LoggerHandler(output_dir)
            logging.root.addHandler(self.logger_handler)
            transformers.logging.add_handler(self.logger_handler)

    def _set_abort(self, signum, frame) -> None:
        self.aborted = True

    def _reset(self, max_steps: int = 0) -> None:
        self.start_time = time.time()
        self.cur_steps = 0
        self.max_steps = max_steps
        self.elapsed_time = ""
        self.remaining_time = ""

    def _timing(self, cur_steps: int) -> None:
        cur_time = time.time()
        elapsed_time = cur_time - self.start_time
        avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
        remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
        self.cur_steps = cur_steps
        self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
        self.remaining_time = str(timedelta(seconds=int(remaining_time)))

    def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
        with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
            f.write(json.dumps(logs) + "\n")

    def _create_thread_pool(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        self.thread_pool = ThreadPoolExecutor(max_workers=1)

    def _close_thread_pool(self) -> None:
        if self.thread_pool is not None:
            self.thread_pool.shutdown(wait=True)
            self.thread_pool = None

    def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called at the end of the initialization of the `Trainer`.
        """
        if (
            args.should_save
            and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
            and args.overwrite_output_dir
        ):
            logger.warning("Previous trainer log in this folder will be deleted.")
            os.remove(os.path.join(args.output_dir, TRAINER_LOG))

    def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called at the beginning of training.
        """
        if args.should_save:
            self.do_train = True
            self._reset(max_steps=state.max_steps)
            self._create_thread_pool(output_dir=args.output_dir)

    def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called at the end of training.
        """
        self._close_thread_pool()

    def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called at the end of an substep during gradient accumulation.
        """
        if self.aborted:
            control.should_epoch_stop = True
            control.should_training_stop = True

    def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called at the end of a training step.
        """
        if self.aborted:
            control.should_epoch_stop = True
            control.should_training_stop = True

    def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called after an evaluation phase.
        """
        if not self.do_train:
            self._close_thread_pool()

    def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called after a successful prediction.
        """
        if not self.do_train:
            self._close_thread_pool()

    def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called after logging the last logs.
        """
        if not args.should_save:
            return

        self._timing(cur_steps=state.global_step)
        logs = dict(
            current_steps=self.cur_steps,
            total_steps=self.max_steps,
            loss=state.log_history[-1].get("loss", None),
            eval_loss=state.log_history[-1].get("eval_loss", None),
            predict_loss=state.log_history[-1].get("predict_loss", None),
            reward=state.log_history[-1].get("reward", None),
            accuracy=state.log_history[-1].get("rewards/accuracies", None),
            learning_rate=state.log_history[-1].get("learning_rate", None),
            epoch=state.log_history[-1].get("epoch", None),
            percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
            elapsed_time=self.elapsed_time,
            remaining_time=self.remaining_time,
            throughput="{:.2f}".format(state.num_input_tokens_seen / (time.time() - self.start_time)),
            total_tokens=state.num_input_tokens_seen,
        )
        logs = {k: v for k, v in logs.items() if v is not None}
        if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
            logger.info(
                "{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
                    logs["loss"], logs["learning_rate"], logs["epoch"], logs["throughput"]
                )
            )

        if self.thread_pool is not None:
            self.thread_pool.submit(self._write_log, args.output_dir, logs)

    def on_prediction_step(
        self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
    ):
        r"""
        Event called after a prediction step.
        """
        if self.do_train:
            return

        if self.aborted:
            sys.exit(0)

        if not args.should_save:
            return

        eval_dataloader = kwargs.pop("eval_dataloader", None)
        if has_length(eval_dataloader):
            if self.max_steps == 0:
                self._reset(max_steps=len(eval_dataloader))
                self._create_thread_pool(output_dir=args.output_dir)

            self._timing(cur_steps=self.cur_steps + 1)
            if self.cur_steps % 5 == 0 and self.thread_pool is not None:
                logs = dict(
                    current_steps=self.cur_steps,
                    total_steps=self.max_steps,
                    percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
                    elapsed_time=self.elapsed_time,
                    remaining_time=self.remaining_time,
                )
                self.thread_pool.submit(self._write_log, args.output_dir, logs)