Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
raw
history blame
10.3 kB
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass, field
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union
from typing_extensions import Self
if TYPE_CHECKING:
import torch
@dataclass
class ModelArguments:
r"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
},
)
adapter_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"Path to the adapter weight or identifier from huggingface.co/models. "
"Use commas to separate multiple adapters."
)
},
)
adapter_folder: Optional[str] = field(
default=None,
metadata={"help": "The folder containing the adapter weights to load."},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
)
resize_vocab: bool = field(
default=False,
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
)
split_special_tokens: bool = field(
default=False,
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
)
new_special_tokens: Optional[str] = field(
default=None,
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
low_cpu_mem_usage: bool = field(
default=True,
metadata={"help": "Whether or not to use memory-efficient model loading."},
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model using bitsandbytes."},
)
quantization_type: Literal["fp4", "nf4"] = field(
default="nf4",
metadata={"help": "Quantization data type to use in int4 training."},
)
double_quantization: bool = field(
default=True,
metadata={"help": "Whether or not to use double quantization in int4 training."},
)
quantization_device_map: Optional[Literal["auto"]] = field(
default=None,
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
)
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
default=None,
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
)
flash_attn: Literal["off", "sdpa", "fa2", "auto"] = field(
default="auto",
metadata={"help": "Enable FlashAttention for faster training and inference."},
)
shift_attn: bool = field(
default=False,
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
)
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
default=None,
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
)
use_unsloth: bool = field(
default=False,
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
)
visual_inputs: bool = field(
default=False,
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."},
)
moe_aux_loss_coef: Optional[float] = field(
default=None,
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
)
disable_gradient_checkpointing: bool = field(
default=False,
metadata={"help": "Whether or not to disable gradient checkpointing."},
)
upcast_layernorm: bool = field(
default=False,
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
)
upcast_lmhead_output: bool = field(
default=False,
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
)
train_from_scratch: bool = field(
default=False,
metadata={"help": "Whether or not to randomly initialize the model weights."},
)
infer_backend: Literal["huggingface", "vllm"] = field(
default="huggingface",
metadata={"help": "Backend engine used at inference."},
)
vllm_maxlen: int = field(
default=2048,
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
)
vllm_gpu_util: float = field(
default=0.9,
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
)
vllm_enforce_eager: bool = field(
default=False,
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
)
vllm_max_lora_rank: int = field(
default=32,
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
)
offload_folder: str = field(
default="offload",
metadata={"help": "Path to offload model weights."},
)
use_cache: bool = field(
default=True,
metadata={"help": "Whether or not to use KV cache in generation."},
)
infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
default="auto",
metadata={"help": "Data type for model weights and activations at inference."},
)
hf_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."},
)
ms_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with ModelScope Hub."},
)
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."},
)
export_size: int = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."},
)
export_device: Literal["cpu", "auto"] = field(
default="cpu",
metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
)
export_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the exported model."},
)
export_quantization_dataset: Optional[str] = field(
default=None,
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
)
export_quantization_nsamples: int = field(
default=128,
metadata={"help": "The number of samples used for quantization."},
)
export_quantization_maxlen: int = field(
default=1024,
metadata={"help": "The maximum length of the model inputs used for quantization."},
)
export_legacy_format: bool = field(
default=False,
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
)
export_hub_model_id: Optional[str] = field(
default=None,
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
)
print_param_status: bool = field(
default=False,
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
)
def __post_init__(self):
self.compute_dtype: Optional["torch.dtype"] = None
self.device_map: Optional[Union[str, Dict[str, Any]]] = None
self.model_max_length: Optional[int] = None
if self.split_special_tokens and self.use_fast_tokenizer:
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
if self.visual_inputs and self.use_unsloth:
raise ValueError("Unsloth does not support MLLM yet. Stay tuned.")
if self.adapter_name_or_path is not None: # support merging multiple lora weights
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
if self.new_special_tokens is not None: # support multiple special tokens
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
raise ValueError("Quantization dataset is necessary for exporting.")
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@classmethod
def copyfrom(cls, old_arg: Self, **kwargs) -> Self:
arg_dict = old_arg.to_dict()
arg_dict.update(**kwargs)
new_arg = cls(**arg_dict)
new_arg.compute_dtype = old_arg.compute_dtype
new_arg.device_map = old_arg.device_map
new_arg.model_max_length = old_arg.model_max_length
return new_arg