Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import asdict, dataclass, field | |
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union | |
from typing_extensions import Self | |
if TYPE_CHECKING: | |
import torch | |
class ModelArguments: | |
r""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer. | |
""" | |
model_name_or_path: str = field( | |
metadata={ | |
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models." | |
}, | |
) | |
adapter_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Path to the adapter weight or identifier from huggingface.co/models. " | |
"Use commas to separate multiple adapters." | |
) | |
}, | |
) | |
adapter_folder: Optional[str] = field( | |
default=None, | |
metadata={"help": "The folder containing the adapter weights to load."}, | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}, | |
) | |
resize_vocab: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}, | |
) | |
split_special_tokens: bool = field( | |
default=False, | |
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}, | |
) | |
new_special_tokens: Optional[str] = field( | |
default=None, | |
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
low_cpu_mem_usage: bool = field( | |
default=True, | |
metadata={"help": "Whether or not to use memory-efficient model loading."}, | |
) | |
quantization_bit: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of bits to quantize the model using bitsandbytes."}, | |
) | |
quantization_type: Literal["fp4", "nf4"] = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use in int4 training."}, | |
) | |
double_quantization: bool = field( | |
default=True, | |
metadata={"help": "Whether or not to use double quantization in int4 training."}, | |
) | |
quantization_device_map: Optional[Literal["auto"]] = field( | |
default=None, | |
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."}, | |
) | |
rope_scaling: Optional[Literal["linear", "dynamic"]] = field( | |
default=None, | |
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}, | |
) | |
flash_attn: Literal["off", "sdpa", "fa2", "auto"] = field( | |
default="auto", | |
metadata={"help": "Enable FlashAttention for faster training and inference."}, | |
) | |
shift_attn: bool = field( | |
default=False, | |
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}, | |
) | |
mixture_of_depths: Optional[Literal["convert", "load"]] = field( | |
default=None, | |
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."}, | |
) | |
use_unsloth: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}, | |
) | |
visual_inputs: bool = field( | |
default=False, | |
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."}, | |
) | |
moe_aux_loss_coef: Optional[float] = field( | |
default=None, | |
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."}, | |
) | |
disable_gradient_checkpointing: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to disable gradient checkpointing."}, | |
) | |
upcast_layernorm: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}, | |
) | |
upcast_lmhead_output: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}, | |
) | |
train_from_scratch: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to randomly initialize the model weights."}, | |
) | |
infer_backend: Literal["huggingface", "vllm"] = field( | |
default="huggingface", | |
metadata={"help": "Backend engine used at inference."}, | |
) | |
vllm_maxlen: int = field( | |
default=2048, | |
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."}, | |
) | |
vllm_gpu_util: float = field( | |
default=0.9, | |
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."}, | |
) | |
vllm_enforce_eager: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."}, | |
) | |
vllm_max_lora_rank: int = field( | |
default=32, | |
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."}, | |
) | |
offload_folder: str = field( | |
default="offload", | |
metadata={"help": "Path to offload model weights."}, | |
) | |
use_cache: bool = field( | |
default=True, | |
metadata={"help": "Whether or not to use KV cache in generation."}, | |
) | |
infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field( | |
default="auto", | |
metadata={"help": "Data type for model weights and activations at inference."}, | |
) | |
hf_hub_token: Optional[str] = field( | |
default=None, | |
metadata={"help": "Auth token to log in with Hugging Face Hub."}, | |
) | |
ms_hub_token: Optional[str] = field( | |
default=None, | |
metadata={"help": "Auth token to log in with ModelScope Hub."}, | |
) | |
export_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to the directory to save the exported model."}, | |
) | |
export_size: int = field( | |
default=1, | |
metadata={"help": "The file shard size (in GB) of the exported model."}, | |
) | |
export_device: Literal["cpu", "auto"] = field( | |
default="cpu", | |
metadata={"help": "The device used in model export, use `auto` to accelerate exporting."}, | |
) | |
export_quantization_bit: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of bits to quantize the exported model."}, | |
) | |
export_quantization_dataset: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}, | |
) | |
export_quantization_nsamples: int = field( | |
default=128, | |
metadata={"help": "The number of samples used for quantization."}, | |
) | |
export_quantization_maxlen: int = field( | |
default=1024, | |
metadata={"help": "The maximum length of the model inputs used for quantization."}, | |
) | |
export_legacy_format: bool = field( | |
default=False, | |
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}, | |
) | |
export_hub_model_id: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}, | |
) | |
print_param_status: bool = field( | |
default=False, | |
metadata={"help": "For debugging purposes, print the status of the parameters in the model."}, | |
) | |
def __post_init__(self): | |
self.compute_dtype: Optional["torch.dtype"] = None | |
self.device_map: Optional[Union[str, Dict[str, Any]]] = None | |
self.model_max_length: Optional[int] = None | |
if self.split_special_tokens and self.use_fast_tokenizer: | |
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") | |
if self.visual_inputs and self.use_unsloth: | |
raise ValueError("Unsloth does not support MLLM yet. Stay tuned.") | |
if self.adapter_name_or_path is not None: # support merging multiple lora weights | |
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")] | |
if self.new_special_tokens is not None: # support multiple special tokens | |
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")] | |
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." | |
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization." | |
if self.export_quantization_bit is not None and self.export_quantization_dataset is None: | |
raise ValueError("Quantization dataset is necessary for exporting.") | |
def to_dict(self) -> Dict[str, Any]: | |
return asdict(self) | |
def copyfrom(cls, old_arg: Self, **kwargs) -> Self: | |
arg_dict = old_arg.to_dict() | |
arg_dict.update(**kwargs) | |
new_arg = cls(**arg_dict) | |
new_arg.compute_dtype = old_arg.compute_dtype | |
new_arg.device_map = old_arg.device_map | |
new_arg.model_max_length = old_arg.model_max_length | |
return new_arg | |