Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, List, Optional | |
from transformers import DataCollatorForSeq2Seq | |
from ...data import get_dataset, split_dataset | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.misc import get_logits_processor | |
from ...extras.ploting import plot_loss | |
from ...model import load_model, load_tokenizer | |
from ..trainer_utils import create_modelcard_and_push | |
from .metric import ComputeMetrics | |
from .trainer import CustomSeq2SeqTrainer | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
def run_sft( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) | |
if training_args.predict_with_generate: | |
tokenizer.padding_side = "left" # use left-padding in generation | |
if getattr(model, "is_quantized", False) and not training_args.do_train: | |
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer=tokenizer, | |
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention | |
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, | |
) | |
# Override the decoding parameters of Seq2SeqTrainer | |
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len | |
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams | |
training_args.remove_unused_columns = False if model_args.visual_inputs else training_args.remove_unused_columns | |
# Initialize our Trainer | |
trainer = CustomSeq2SeqTrainer( | |
model=model, | |
args=training_args, | |
finetuning_args=finetuning_args, | |
data_collator=data_collator, | |
callbacks=callbacks, | |
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None, | |
**tokenizer_module, | |
**split_dataset(dataset, data_args, training_args), | |
) | |
# Keyword arguments for `model.generate` | |
gen_kwargs = generating_args.to_dict() | |
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids | |
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id | |
gen_kwargs["logits_processor"] = get_logits_processor() | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
trainer.save_model() | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) | |
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled | |
metrics.pop("eval_loss", None) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Predict | |
if training_args.do_predict: | |
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs) | |
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled | |
predict_results.metrics.pop("predict_loss", None) | |
trainer.log_metrics("predict", predict_results.metrics) | |
trainer.save_metrics("predict", predict_results.metrics) | |
trainer.save_predictions(dataset, predict_results) | |
# Create model card | |
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |