Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
raw
history blame
18.9 kB
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from copy import deepcopy
from subprocess import Popen, TimeoutExpired
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional
from transformers.trainer import TRAINING_ARGS_NAME
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
from ..extras.misc import is_gpu_or_npu_available, torch_gc
from ..extras.packages import is_gradio_available
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, get_save_dir, load_config
from .locales import ALERTS, LOCALES
from .utils import abort_leaf_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd
if is_gradio_available():
import gradio as gr
if TYPE_CHECKING:
from gradio.components import Component
from .manager import Manager
class Runner:
def __init__(self, manager: "Manager", demo_mode: bool = False) -> None:
self.manager = manager
self.demo_mode = demo_mode
""" Resume """
self.trainer: Optional["Popen"] = None
self.do_train = True
self.running_data: Dict["Component", Any] = None
""" State """
self.aborted = False
self.running = False
def set_abort(self) -> None:
self.aborted = True
if self.trainer is not None:
abort_leaf_process(self.trainer.pid)
def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str:
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
dataset = get("train.dataset") if do_train else get("eval.dataset")
if self.running:
return ALERTS["err_conflict"][lang]
if not model_name:
return ALERTS["err_no_model"][lang]
if not model_path:
return ALERTS["err_no_path"][lang]
if not dataset:
return ALERTS["err_no_dataset"][lang]
if not from_preview and self.demo_mode:
return ALERTS["err_demo"][lang]
if do_train:
if not get("train.output_dir"):
return ALERTS["err_no_output_dir"][lang]
stage = TRAINING_STAGES[get("train.training_stage")]
if stage == "ppo" and not get("train.reward_model"):
return ALERTS["err_no_reward_model"][lang]
else:
if not get("eval.output_dir"):
return ALERTS["err_no_output_dir"][lang]
if not from_preview and not is_gpu_or_npu_available():
gr.Warning(ALERTS["warn_no_cuda"][lang])
return ""
def _finalize(self, lang: str, finish_info: str) -> str:
finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info
self.trainer = None
self.aborted = False
self.running = False
self.running_data = None
torch_gc()
return finish_info
def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
user_config = load_config()
args = dict(
stage=TRAINING_STAGES[get("train.training_stage")],
do_train=True,
model_name_or_path=get("top.model_path"),
cache_dir=user_config.get("cache_dir", None),
preprocessing_num_workers=16,
finetuning_type=finetuning_type,
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
use_unsloth=(get("top.booster") == "unsloth"),
visual_inputs=get("top.visual_inputs"),
dataset_dir=get("train.dataset_dir"),
dataset=",".join(get("train.dataset")),
cutoff_len=get("train.cutoff_len"),
learning_rate=float(get("train.learning_rate")),
num_train_epochs=float(get("train.num_train_epochs")),
max_samples=int(get("train.max_samples")),
per_device_train_batch_size=get("train.batch_size"),
gradient_accumulation_steps=get("train.gradient_accumulation_steps"),
lr_scheduler_type=get("train.lr_scheduler_type"),
max_grad_norm=float(get("train.max_grad_norm")),
logging_steps=get("train.logging_steps"),
save_steps=get("train.save_steps"),
warmup_steps=get("train.warmup_steps"),
neftune_noise_alpha=get("train.neftune_alpha") or None,
optim=get("train.optim"),
resize_vocab=get("train.resize_vocab"),
packing=get("train.packing"),
upcast_layernorm=get("train.upcast_layernorm"),
use_llama_pro=get("train.use_llama_pro"),
shift_attn=get("train.shift_attn"),
report_to="all" if get("train.report_to") else "none",
use_galore=get("train.use_galore"),
use_badam=get("train.use_badam"),
output_dir=get_save_dir(model_name, finetuning_type, get("train.output_dir")),
fp16=(get("train.compute_type") == "fp16"),
bf16=(get("train.compute_type") == "bf16"),
pure_bf16=(get("train.compute_type") == "pure_bf16"),
plot_loss=True,
ddp_timeout=180000000,
include_num_input_tokens_seen=True,
)
# checkpoints
if get("top.checkpoint_path"):
if finetuning_type in PEFT_METHODS: # list
args["adapter_name_or_path"] = ",".join(
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
)
else: # str
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))
# freeze config
if args["finetuning_type"] == "freeze":
args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
args["freeze_trainable_modules"] = get("train.freeze_trainable_modules")
args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None
# lora config
if args["finetuning_type"] == "lora":
args["lora_rank"] = get("train.lora_rank")
args["lora_alpha"] = get("train.lora_alpha")
args["lora_dropout"] = get("train.lora_dropout")
args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None
args["create_new_adapter"] = get("train.create_new_adapter")
args["use_rslora"] = get("train.use_rslora")
args["use_dora"] = get("train.use_dora")
args["pissa_init"] = get("train.use_pissa")
args["pissa_convert"] = get("train.use_pissa")
args["lora_target"] = get("train.lora_target") or "all"
args["additional_target"] = get("train.additional_target") or None
if args["use_llama_pro"]:
args["num_layer_trainable"] = get("train.num_layer_trainable")
# rlhf config
if args["stage"] == "ppo":
if finetuning_type in PEFT_METHODS:
args["reward_model"] = ",".join(
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("train.reward_model")]
)
else:
args["reward_model"] = get_save_dir(model_name, finetuning_type, get("train.reward_model"))
args["reward_model_type"] = "lora" if finetuning_type == "lora" else "full"
args["ppo_score_norm"] = get("train.ppo_score_norm")
args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards")
args["top_k"] = 0
args["top_p"] = 0.9
elif args["stage"] in ["dpo", "kto"]:
args["pref_beta"] = get("train.pref_beta")
args["pref_ftx"] = get("train.pref_ftx")
args["pref_loss"] = get("train.pref_loss")
# galore config
if args["use_galore"]:
args["galore_rank"] = get("train.galore_rank")
args["galore_update_interval"] = get("train.galore_update_interval")
args["galore_scale"] = get("train.galore_scale")
args["galore_target"] = get("train.galore_target")
# badam config
if args["use_badam"]:
args["badam_mode"] = get("train.badam_mode")
args["badam_switch_mode"] = get("train.badam_switch_mode")
args["badam_switch_interval"] = get("train.badam_switch_interval")
args["badam_update_ratio"] = get("train.badam_update_ratio")
# eval config
if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
args["val_size"] = get("train.val_size")
args["eval_strategy"] = "steps"
args["eval_steps"] = args["save_steps"]
args["per_device_eval_batch_size"] = args["per_device_train_batch_size"]
# ds config
if get("train.ds_stage") != "none":
ds_stage = get("train.ds_stage")
ds_offload = "offload_" if get("train.ds_offload") else ""
args["deepspeed"] = os.path.join(DEFAULT_CACHE_DIR, "ds_z{}_{}config.json".format(ds_stage, ds_offload))
return args
def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
user_config = load_config()
args = dict(
stage="sft",
model_name_or_path=get("top.model_path"),
cache_dir=user_config.get("cache_dir", None),
preprocessing_num_workers=16,
finetuning_type=finetuning_type,
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
use_unsloth=(get("top.booster") == "unsloth"),
visual_inputs=get("top.visual_inputs"),
dataset_dir=get("eval.dataset_dir"),
dataset=",".join(get("eval.dataset")),
cutoff_len=get("eval.cutoff_len"),
max_samples=int(get("eval.max_samples")),
per_device_eval_batch_size=get("eval.batch_size"),
predict_with_generate=True,
max_new_tokens=get("eval.max_new_tokens"),
top_p=get("eval.top_p"),
temperature=get("eval.temperature"),
output_dir=get_save_dir(model_name, finetuning_type, get("eval.output_dir")),
)
if get("eval.predict"):
args["do_predict"] = True
else:
args["do_eval"] = True
if get("top.checkpoint_path"):
if finetuning_type in PEFT_METHODS: # list
args["adapter_name_or_path"] = ",".join(
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
)
else: # str
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))
return args
def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", str], None, None]:
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
error = self._initialize(data, do_train, from_preview=True)
if error:
gr.Warning(error)
yield {output_box: error}
else:
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
yield {output_box: gen_cmd(args)}
def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", Any], None, None]:
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
error = self._initialize(data, do_train, from_preview=False)
if error:
gr.Warning(error)
yield {output_box: error}
else:
self.do_train, self.running_data = do_train, data
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
os.makedirs(args["output_dir"], exist_ok=True)
save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._form_config_dict(data))
env = deepcopy(os.environ)
env["LLAMABOARD_ENABLED"] = "1"
if args.get("deepspeed", None) is not None:
env["FORCE_TORCHRUN"] = "1"
self.trainer = Popen("llamafactory-cli train {}".format(save_cmd(args)), env=env, shell=True)
yield from self.monitor()
def _form_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]:
config_dict = {}
skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path", "train.device_count"]
for elem, value in data.items():
elem_id = self.manager.get_id_by_elem(elem)
if elem_id not in skip_ids:
config_dict[elem_id] = value
return config_dict
def preview_train(self, data):
yield from self._preview(data, do_train=True)
def preview_eval(self, data):
yield from self._preview(data, do_train=False)
def run_train(self, data):
yield from self._launch(data, do_train=True)
def run_eval(self, data):
yield from self._launch(data, do_train=False)
def monitor(self):
self.aborted = False
self.running = True
get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)]
lang, model_name, finetuning_type = get("top.lang"), get("top.model_name"), get("top.finetuning_type")
output_dir = get("{}.output_dir".format("train" if self.do_train else "eval"))
output_path = get_save_dir(model_name, finetuning_type, output_dir)
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval"))
progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval"))
loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None
while self.trainer is not None:
if self.aborted:
yield {
output_box: ALERTS["info_aborting"][lang],
progress_bar: gr.Slider(visible=False),
}
else:
running_log, running_progress, running_loss = get_trainer_info(output_path, self.do_train)
return_dict = {
output_box: running_log,
progress_bar: running_progress,
}
if running_loss is not None:
return_dict[loss_viewer] = running_loss
yield return_dict
try:
self.trainer.wait(2)
self.trainer = None
except TimeoutExpired:
continue
if self.do_train:
if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)):
finish_info = ALERTS["info_finished"][lang]
else:
finish_info = ALERTS["err_failed"][lang]
else:
if os.path.exists(os.path.join(output_path, "all_results.json")):
finish_info = get_eval_results(os.path.join(output_path, "all_results.json"))
else:
finish_info = ALERTS["err_failed"][lang]
return_dict = {
output_box: self._finalize(lang, finish_info),
progress_bar: gr.Slider(visible=False),
}
yield return_dict
def save_args(self, data):
output_box = self.manager.get_elem_by_id("train.output_box")
error = self._initialize(data, do_train=True, from_preview=True)
if error:
gr.Warning(error)
return {output_box: error}
lang = data[self.manager.get_elem_by_id("top.lang")]
config_path = data[self.manager.get_elem_by_id("train.config_path")]
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path)
save_args(save_path, self._form_config_dict(data))
return {output_box: ALERTS["info_config_saved"][lang] + save_path}
def load_args(self, lang: str, config_path: str):
output_box = self.manager.get_elem_by_id("train.output_box")
config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path))
if config_dict is None:
gr.Warning(ALERTS["err_config_not_found"][lang])
return {output_box: ALERTS["err_config_not_found"][lang]}
output_dict: Dict["Component", Any] = {output_box: ALERTS["info_config_loaded"][lang]}
for elem_id, value in config_dict.items():
output_dict[self.manager.get_elem_by_id(elem_id)] = value
return output_dict
def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str):
output_box = self.manager.get_elem_by_id("train.output_box")
output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]}
if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
gr.Warning(ALERTS["warn_output_dir_exists"][lang])
output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang]
output_dir = get_save_dir(model_name, finetuning_type, output_dir)
config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG)) # load llamaboard config
for elem_id, value in config_dict.items():
output_dict[self.manager.get_elem_by_id(elem_id)] = value
return output_dict