Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import Dict, Sequence | |
import pytest | |
import torch | |
from peft import LoraModel, PeftModel | |
from transformers import AutoModelForCausalLM | |
from trl import AutoModelForCausalLMWithValueHead | |
from llamafactory.extras.misc import get_current_device | |
from llamafactory.hparams import get_infer_args, get_train_args | |
from llamafactory.model import load_model, load_tokenizer | |
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
TINY_LLAMA_ADAPTER = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora") | |
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "lora", | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 1024, | |
"overwrite_cache": True, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
INFER_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"adapter_name_or_path": TINY_LLAMA_ADAPTER, | |
"finetuning_type": "lora", | |
"template": "llama3", | |
"infer_dtype": "float16", | |
} | |
def load_reference_model(is_trainable: bool = False) -> "LoraModel": | |
model = AutoModelForCausalLM.from_pretrained( | |
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() | |
) | |
lora_model = PeftModel.from_pretrained(model, TINY_LLAMA_ADAPTER, is_trainable=is_trainable) | |
for param in filter(lambda p: p.requires_grad, lora_model.parameters()): | |
param.data = param.data.to(torch.float32) | |
return lora_model | |
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []): | |
state_dict_a = model_a.state_dict() | |
state_dict_b = model_b.state_dict() | |
assert set(state_dict_a.keys()) == set(state_dict_b.keys()) | |
for name in state_dict_a.keys(): | |
if any(key in name for key in diff_keys): | |
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is False | |
else: | |
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is True | |
def fix_valuehead_cpu_loading(): | |
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]): | |
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} | |
self.v_head.load_state_dict(state_dict, strict=False) | |
del state_dict | |
AutoModelForCausalLMWithValueHead.post_init = post_init | |
def test_lora_train_qv_modules(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "q_proj,v_proj", **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
linear_modules = set() | |
for name, param in model.named_parameters(): | |
if any(module in name for module in ["lora_A", "lora_B"]): | |
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) | |
assert param.requires_grad is True | |
assert param.dtype == torch.float32 | |
else: | |
assert param.requires_grad is False | |
assert param.dtype == torch.float16 | |
assert linear_modules == {"q_proj", "v_proj"} | |
def test_lora_train_all_modules(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "all", **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
linear_modules = set() | |
for name, param in model.named_parameters(): | |
if any(module in name for module in ["lora_A", "lora_B"]): | |
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) | |
assert param.requires_grad is True | |
assert param.dtype == torch.float32 | |
else: | |
assert param.requires_grad is False | |
assert param.dtype == torch.float16 | |
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"} | |
def test_lora_train_extra_modules(): | |
model_args, _, _, finetuning_args, _ = get_train_args( | |
{"lora_target": "all", "additional_target": "embed_tokens,lm_head", **TRAIN_ARGS} | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
extra_modules = set() | |
for name, param in model.named_parameters(): | |
if any(module in name for module in ["lora_A", "lora_B"]): | |
assert param.requires_grad is True | |
assert param.dtype == torch.float32 | |
elif "modules_to_save" in name: | |
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1]) | |
assert param.requires_grad is True | |
assert param.dtype == torch.float32 | |
else: | |
assert param.requires_grad is False | |
assert param.dtype == torch.float16 | |
assert extra_modules == {"embed_tokens", "lm_head"} | |
def test_lora_train_old_adapters(): | |
model_args, _, _, finetuning_args, _ = get_train_args( | |
{"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": False, **TRAIN_ARGS} | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
ref_model = load_reference_model(is_trainable=True) | |
compare_model(model, ref_model) | |
def test_lora_train_new_adapters(): | |
model_args, _, _, finetuning_args, _ = get_train_args( | |
{"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": True, **TRAIN_ARGS} | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
ref_model = load_reference_model(is_trainable=True) | |
compare_model( | |
model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"] | |
) | |
def test_lora_train_valuehead(): | |
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model( | |
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True, add_valuehead=True | |
) | |
ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( | |
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device() | |
) | |
state_dict = model.state_dict() | |
ref_state_dict = ref_model.state_dict() | |
assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"]) | |
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"]) | |
def test_lora_inference(): | |
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) | |
ref_model = load_reference_model().merge_and_unload() | |
compare_model(model, ref_model) | |