Spaces:
Running
Running
import json | |
import os | |
import datasets | |
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co") | |
_DESCRIPTION = "BELLE multiturn chat dataset." | |
_CITATION = """\ | |
@article{belle2023exploring, | |
title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases}, | |
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li}, | |
journal={arXiv preprint arXiv:2303.14742}, | |
year={2023} | |
} | |
""" | |
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT) | |
_LICENSE = "gpl-3.0" | |
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT) | |
class BelleMultiturn(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("0.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager): | |
file_path = dl_manager.download(_URL) | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})] | |
def _generate_examples(self, filepath: str): | |
with open(filepath, "r", encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
conversations = [] | |
prompt = data["instruction"].strip() | |
response = data["output"].strip() | |
assist_idx = prompt.rfind("Assistant:") | |
human_idx = prompt.rfind("Human:") | |
query = prompt[human_idx + 6 : assist_idx].strip() | |
prompt = prompt[:human_idx].strip() | |
conversations.insert(0, {"from": "gpt", "value": response}) | |
conversations.insert(0, {"from": "human", "value": query}) | |
while prompt.rfind("Assistant:") != -1: | |
assist_idx = prompt.rfind("Assistant:") | |
human_idx = prompt.rfind("Human:") | |
if human_idx != -1: | |
old_query = prompt[human_idx + 6 : assist_idx].strip() | |
old_resp = prompt[assist_idx + 10 :].strip() | |
conversations.insert(0, {"from": "gpt", "value": old_resp}) | |
conversations.insert(0, {"from": "human", "value": old_query}) | |
else: | |
break | |
prompt = prompt[:human_idx].strip() | |
yield key, {"conversations": conversations} | |