Upload 2 files
Browse files- app.py +37 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image # For image handling
|
3 |
+
|
4 |
+
# Replace with paths or loading functions for your specific models
|
5 |
+
def load_model_1():
|
6 |
+
# ... load your first model
|
7 |
+
return model_1
|
8 |
+
|
9 |
+
def load_model_2():
|
10 |
+
# ... load your second model
|
11 |
+
return model_2
|
12 |
+
|
13 |
+
def load_model_3():
|
14 |
+
# ... load your third model
|
15 |
+
return model_3
|
16 |
+
|
17 |
+
def generate_caption(model, image):
|
18 |
+
# ... perform inference with your model
|
19 |
+
return caption
|
20 |
+
|
21 |
+
models = [load_model_1(), load_model_2(), load_model_3()]
|
22 |
+
|
23 |
+
with gr.Blocks() as demo:
|
24 |
+
with gr.Row():
|
25 |
+
image = gr.Image(label="Upload Chest X-ray")
|
26 |
+
with gr.Row():
|
27 |
+
gr.Radio(["Model 1", "Model 2", "Model 3"], label="Select Model")
|
28 |
+
with gr.Row():
|
29 |
+
caption = gr.Textbox(label="Generated Caption")
|
30 |
+
|
31 |
+
image.change(
|
32 |
+
fn=generate_caption,
|
33 |
+
inputs=[image, gr.inputs.Radio],
|
34 |
+
outputs=caption
|
35 |
+
)
|
36 |
+
|
37 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers # Assuming you're using transformers models
|
3 |
+
torchvision # For image handling
|
4 |
+
pillow
|