Jyothirmai
commited on
Update cnnrnn.py
Browse files
cnnrnn.py
CHANGED
@@ -36,10 +36,11 @@ def getModel(image):
|
|
36 |
embedding_matrix_vocab = np.load('my_embedding_matrix.npy')
|
37 |
|
38 |
input_shape = (image.shape[1],)
|
|
|
39 |
input1 = Input(shape=input_shape, name='Image_input')
|
40 |
dense1 = Dense(256, kernel_initializer=tf.keras.initializers.glorot_uniform(seed = 56), name='dense_encoder')(input1)
|
41 |
|
42 |
-
input2 = Input(shape=
|
43 |
embedding_layer = Embedding(input_dim = 1427, output_dim = 300, input_length=153, mask_zero=True, trainable=False,
|
44 |
weights=[embedding_matrix_vocab], name="Embedding_layer")
|
45 |
emb = embedding_layer(input2)
|
|
|
36 |
embedding_matrix_vocab = np.load('my_embedding_matrix.npy')
|
37 |
|
38 |
input_shape = (image.shape[1],)
|
39 |
+
text_input_shape = (153,)
|
40 |
input1 = Input(shape=input_shape, name='Image_input')
|
41 |
dense1 = Dense(256, kernel_initializer=tf.keras.initializers.glorot_uniform(seed = 56), name='dense_encoder')(input1)
|
42 |
|
43 |
+
input2 = Input(shape=text_input_shape, name='Text_Input')
|
44 |
embedding_layer = Embedding(input_dim = 1427, output_dim = 300, input_length=153, mask_zero=True, trainable=False,
|
45 |
weights=[embedding_matrix_vocab], name="Embedding_layer")
|
46 |
emb = embedding_layer(input2)
|