Jyothirmai
commited on
Upload 8 files
Browse files- CXR191_IM-0591-1001.png +0 -0
- CXR192_IM-0598-1001.png +0 -0
- CXR193_IM-0601-1001.png +0 -0
- CXR194_IM-0609-1001.png +0 -0
- CXR195_IM-0618-1001.png +0 -0
- app.py +35 -23
- clipGPT.py +164 -0
- model_train_best_run_clipGPT.pt +3 -0
CXR191_IM-0591-1001.png
ADDED
CXR192_IM-0598-1001.png
ADDED
CXR193_IM-0601-1001.png
ADDED
CXR194_IM-0609-1001.png
ADDED
CXR195_IM-0618-1001.png
ADDED
app.py
CHANGED
@@ -1,37 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image
|
|
|
3 |
|
4 |
-
#
|
5 |
-
def load_model_1():
|
6 |
-
#
|
7 |
-
return
|
8 |
|
9 |
-
|
10 |
-
# ... load your second model
|
11 |
-
return model_2
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
def generate_caption(model, image):
|
18 |
-
# ... perform inference with your model
|
19 |
return caption
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
23 |
with gr.Blocks() as demo:
|
24 |
with gr.Row():
|
25 |
-
image = gr.Image(label="Upload Chest X-ray")
|
26 |
-
|
27 |
-
|
|
|
28 |
with gr.Row():
|
29 |
caption = gr.Textbox(label="Generated Caption")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import clipGPT
|
4 |
|
5 |
+
# Define model loading functions (if needed)
|
6 |
+
def load_model_1(): # CLIP-GPT2
|
7 |
+
# Load model components here if necessary
|
8 |
+
return None
|
9 |
|
10 |
+
# ... load_model_2(), load_model_3() - Define if and when needed
|
|
|
|
|
11 |
|
12 |
+
# Caption generation functions
|
13 |
+
def generate_caption_clipgpt(image):
|
14 |
+
caption = clipGPT.generate_caption_clipgpt(image)
|
|
|
|
|
|
|
15 |
return caption
|
16 |
|
17 |
+
# ... Add more caption generation functions for future models
|
18 |
+
|
19 |
+
# Sample image paths
|
20 |
+
sample_images = [
|
21 |
+
"CXR191_IM-0591-1001.jpg",
|
22 |
+
"CXR191_IM-0598-1001.jpg",
|
23 |
+
"CXR191_IM-0601-1001.jpg",
|
24 |
+
"CXR191_IM-0609-1001.jpg",
|
25 |
+
"CXR191_IM-0618-1001.jpg"
|
26 |
+
]
|
27 |
|
28 |
+
# Gradio interface
|
29 |
with gr.Blocks() as demo:
|
30 |
with gr.Row():
|
31 |
+
image = gr.Image(label="Upload Chest X-ray", source="upload")
|
32 |
+
sample_image_gallery = gr.ImageGallery(sample_images, label="Sample Images")
|
33 |
+
with gr.Row():
|
34 |
+
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
35 |
with gr.Row():
|
36 |
caption = gr.Textbox(label="Generated Caption")
|
37 |
|
38 |
+
def predict(img, model_name):
|
39 |
+
if model_name == "CLIP-GPT2":
|
40 |
+
return generate_caption_clipgpt(img)
|
41 |
+
# Add elif blocks for "ViT-GPT2", "ViT-CoAttention" as you implement them
|
42 |
+
else:
|
43 |
+
return "Caption generation for this model is not yet implemented."
|
44 |
+
|
45 |
+
# Handle changes for both uploaded and sample images
|
46 |
+
gr.Image.change(predict, [image, model_choice], caption)
|
47 |
+
sample_image_gallery.change(predict, [sample_image_gallery, model_choice], caption)
|
48 |
|
49 |
demo.launch()
|
clipGPT.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import clip
|
5 |
+
import skimage.io as io
|
6 |
+
import PIL.Image
|
7 |
+
from IPython.display import Image
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
import skimage.io as io
|
10 |
+
import PIL.Image
|
11 |
+
from IPython.display import Image
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import numpy as np
|
15 |
+
import time
|
16 |
+
import json
|
17 |
+
import nltk
|
18 |
+
nltk.download('punkt')
|
19 |
+
|
20 |
+
|
21 |
+
class ClipGPT2Model(nn.Module):
|
22 |
+
def __init__(self, img_feature_length, img_feature_size = 512):
|
23 |
+
super(ClipGPT2Model, self).__init__()
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
gc.collect()
|
26 |
+
self.img_feature_length = img_feature_length
|
27 |
+
|
28 |
+
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
|
29 |
+
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
30 |
+
self.clip_project = Adapter((img_feature_size,
|
31 |
+
(self.gpt_embedding_size * img_feature_length) // 2,
|
32 |
+
self.gpt_embedding_size * img_feature_length))
|
33 |
+
torch.cuda.empty_cache()
|
34 |
+
def get_dummy_token(self,
|
35 |
+
batch_size: int,
|
36 |
+
device: torch.device) -> torch.Tensor:
|
37 |
+
return torch.zeros(batch_size, self.img_feature_length, dtype=torch.int64, device=device)
|
38 |
+
|
39 |
+
def forward(self,
|
40 |
+
tokens: torch.Tensor,
|
41 |
+
feature: torch.Tensor,
|
42 |
+
mask = None,
|
43 |
+
labels = None):
|
44 |
+
torch.cuda.empty_cache()
|
45 |
+
gc.collect()
|
46 |
+
|
47 |
+
embedding_text = self.gpt.transformer.wte(tokens)
|
48 |
+
feature_projections = self.clip_project(feature).view(-1, self.img_feature_length, self.gpt_embedding_size)
|
49 |
+
embedding_cat = torch.cat((feature_projections, embedding_text), dim=1)
|
50 |
+
if labels is not None:
|
51 |
+
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
52 |
+
labels = torch.cat((dummy_token, tokens), dim=1)
|
53 |
+
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
54 |
+
return out
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def generate_beam(
|
60 |
+
model,
|
61 |
+
tokenizer,
|
62 |
+
beam_size: int = 10,
|
63 |
+
prompt=None,
|
64 |
+
embed=None,
|
65 |
+
entry_length=76,
|
66 |
+
temperature=0.9,
|
67 |
+
stop_token: str = ".",
|
68 |
+
):
|
69 |
+
|
70 |
+
model.eval()
|
71 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
72 |
+
tokens = None
|
73 |
+
scores = None
|
74 |
+
device = next(model.parameters()).device
|
75 |
+
seq_lengths = torch.ones(beam_size, device=device)
|
76 |
+
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
|
77 |
+
with torch.no_grad():
|
78 |
+
if embed is not None:
|
79 |
+
generated = embed
|
80 |
+
else:
|
81 |
+
if tokens is None:
|
82 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
83 |
+
tokens = tokens.unsqueeze(0).to(device)
|
84 |
+
generated = model.gpt.transformer.wte(tokens)
|
85 |
+
for i in range(entry_length):
|
86 |
+
outputs = model.gpt(inputs_embeds=generated)
|
87 |
+
logits = outputs.logits
|
88 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
89 |
+
logits = logits.softmax(-1).log()
|
90 |
+
if scores is None:
|
91 |
+
scores, next_tokens = logits.topk(beam_size, -1)
|
92 |
+
generated = generated.expand(beam_size, *generated.shape[1:])
|
93 |
+
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
|
94 |
+
if tokens is None:
|
95 |
+
tokens = next_tokens
|
96 |
+
else:
|
97 |
+
tokens = tokens.expand(beam_size, *tokens.shape[1:])
|
98 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
99 |
+
else:
|
100 |
+
logits[is_stopped] = -float(np.inf)
|
101 |
+
logits[is_stopped, 0] = 0
|
102 |
+
scores_sum = scores[:, None] + logits
|
103 |
+
seq_lengths[~is_stopped] += 1
|
104 |
+
scores_sum_average = scores_sum / seq_lengths[:, None]
|
105 |
+
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
|
106 |
+
beam_size, -1
|
107 |
+
)
|
108 |
+
next_tokens_source = next_tokens // scores_sum.shape[1]
|
109 |
+
seq_lengths = seq_lengths[next_tokens_source]
|
110 |
+
next_tokens = next_tokens % scores_sum.shape[1]
|
111 |
+
next_tokens = next_tokens.unsqueeze(1)
|
112 |
+
tokens = tokens[next_tokens_source]
|
113 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
114 |
+
generated = generated[next_tokens_source]
|
115 |
+
scores = scores_sum_average * seq_lengths
|
116 |
+
is_stopped = is_stopped[next_tokens_source]
|
117 |
+
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
|
118 |
+
generated.shape[0], 1, -1
|
119 |
+
)
|
120 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
121 |
+
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
|
122 |
+
if is_stopped.all():
|
123 |
+
break
|
124 |
+
scores = scores / seq_lengths
|
125 |
+
output_list = tokens.cpu().numpy()
|
126 |
+
output_texts = [
|
127 |
+
tokenizer.decode(output[: int(length)])
|
128 |
+
for output, length in zip(output_list, seq_lengths)
|
129 |
+
]
|
130 |
+
order = scores.argsort(descending=True)
|
131 |
+
output_texts = [output_texts[i] for i in order]
|
132 |
+
return output_texts
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
def generate_caption_clipgpt(img):
|
137 |
+
|
138 |
+
prefix_length = 10
|
139 |
+
model = ClipGPT2Model(prefix_length, img_feature_size = feature_dim)
|
140 |
+
model.load_state_dict(torch.load('model_train_best_run_clipGPT.pt'))
|
141 |
+
model = model.eval()
|
142 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
143 |
+
model = model.to(device)
|
144 |
+
|
145 |
+
|
146 |
+
clip_model, preprocess = clip.load('ViT-B/32', device, jit=False)
|
147 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
148 |
+
|
149 |
+
start_time = time.time()
|
150 |
+
image = io.imread(img)
|
151 |
+
pil_image = PIL.Image.fromarray(image)
|
152 |
+
image = preprocess(pil_image).unsqueeze(0).to(device)
|
153 |
+
|
154 |
+
with torch.no_grad():
|
155 |
+
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
|
156 |
+
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
157 |
+
beam_caption = generate_beam(model, tokenizer, embed=prefix_embed)[0]
|
158 |
+
|
159 |
+
end_time = time.time()
|
160 |
+
print("--- Time taken to generate: %s seconds ---" % (end_time - start_time))
|
161 |
+
|
162 |
+
return beam_caption
|
163 |
+
|
164 |
+
|
model_train_best_run_clipGPT.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d75b4bf1a982290d2675a78b1f2bc39fa212178f5f609a555a1725150fe5275
|
3 |
+
size 561159626
|