File size: 5,483 Bytes
801501a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import h5py
import numpy as np
import pandas as pd
import torch
from dotmap import DotMap

from salad.utils.paths import DATA_DIR
from salad.utils import thutil


class SALADDataset(torch.utils.data.Dataset):
    def __init__(self, data_path, repeat=None, **kwargs):
        super().__init__()
        self.data_path = str(DATA_DIR / data_path)
        self.repeat = repeat
        self.__dict__.update(kwargs)
        self.hparams = DotMap(self.__dict__)

        """
        Global Data statistics.
        """
        if self.hparams.get("global_normalization"):
            with h5py.File(self.data_path.replace(".hdf5", "_mean_std.hdf5")) as f:
                self.global_mean = f["mean"][:].astype(np.float32)
                self.global_std = f["std"][:].astype(np.float32)

        self.data = dict()
        with h5py.File(self.data_path) as f:
            for k in self.hparams.data_keys:
                self.data[k] = f[k][:].astype(np.float32)

                """
                global_normalization arg is for gaussians only.
                """
                if k == "g_js_affine":
                    if self.hparams.get("global_normalization") == "partial":
                        assert k == "g_js_affine"
                        if self.hparams.get("verbose"):
                            print("[*] Normalize data only for pi and eigenvalues.")
                        # 3: mu, 9: eigvec, 1: pi, 3: eigval
                        self.data[k] = self.normalize_global_static(
                            self.data[k], slice(12, None)
                        )
                    elif self.hparams.get("global_normalization") == "all":
                        assert k == "g_js_affine"
                        if self.hparams.get("verbose"):
                            print("[*] Normalize data for all elements.")
                        self.data[k] = self.normalize_global_static(
                            self.data[k], slice(None)
                        )

    def __getitem__(self, idx):
        if self.repeat is not None and self.repeat > 1:
            idx = int(idx / self.repeat)

        items = []
        for k in self.hparams.data_keys:
            data = torch.from_numpy(self.data[k][idx])
            items.append(data)

        if self.hparams.get("concat_data"):
            return torch.cat(items, -1)  # [16,528]
        if len(items) == 1:
            return items[0]
        return items

    def __len__(self):
        k = self.hparams.data_keys[0]
        if self.repeat is not None and self.repeat > 1:
            return len(self.data[k]) * self.repeat
        return len(self.data[k])

    def get_other_latents(self, key):
        with h5py.File(self.data_path) as f:
            return f[key][:].astype(np.float32)

    def normalize_global_static(self, data: np.ndarray, normalize_indices=slice(None)):
        """
        Input:
            np.ndarray or torch.Tensor. [16,16] or [B,16,16]
            slice(None) -> full
            slice(12, None) -> partial
        Output:
            [16,16] or [B,16,16]
        """
        assert normalize_indices == slice(None) or normalize_indices == slice(
            12, None
        ), print(f"{normalize_indices} is wrong.")
        data = thutil.th2np(data).copy()
        data[..., normalize_indices] = (
            data[..., normalize_indices] - self.global_mean[normalize_indices]
        ) / self.global_std[normalize_indices]
        return data

    def unnormalize_global_static(
        self, data: np.ndarray, unnormalize_indices=slice(None)
    ):
        """
        Input:
            np.ndarray or torch.Tensor. [16,16] or [B,16,16]
            slice(None) -> full
            slice(12, None) -> partial
        Output:
            [16,16] or [B,16,16]
        """
        assert unnormalize_indices == slice(None) or unnormalize_indices == slice(
            12, None
        ), print(f"{unnormalize_indices} is wrong.")
        data = thutil.th2np(data).copy()
        data[..., unnormalize_indices] = (
            data[..., unnormalize_indices]
        ) * self.global_std[unnormalize_indices] + self.global_mean[unnormalize_indices]
        return data


class LangSALADDataset(SALADDataset):
    def __init__(self, data_path, repeat=None, **kwargs):
        super().__init__(data_path, repeat, **kwargs)

        # self.game_data = pd.read_csv(self.hparams.lang_data_path)
        self.game_data = pd.read_csv(DATA_DIR / "autosdf_spaghetti_intersec_game_data.csv")
        self.shapenet_ids = np.array(self.game_data["sn"])
        self.spaghetti_indices = np.array(self.game_data["spaghetti_idx"])  # for 5401
        self.texts = np.array(self.game_data["text"])

        assert len(self.shapenet_ids) == len(self.spaghetti_indices) == len(self.texts)

    def __getitem__(self, idx):
        if self.repeat is not None and self.repeat > 1:
            idx = int(idx / self.repeat)

        spa_idx = self.spaghetti_indices[idx]
        text = self.texts[idx]
        latents = []
        for k in self.hparams.data_keys:
            data = torch.from_numpy(self.data[k][spa_idx])
            latents.append(data)

        item = latents + [text]
        if self.hparams.get("concat_data"):
            latents = torch.cat(latents, -1)
            return latents, text

        return item

    def __len__(self):
        if self.repeat is not None and self.repeat > 1:
            return len(self.texts) * self.repeat
        return len(self.texts)